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Abstract—Optical Coherence Tomography (OCT) is a non-
invasive imaging technique that uses light waves to capture cross-
sectional images of patients’ retina layers, allowing for the
diagnosis of various retinal diseases. Ophthalmologists use OCT
images to decide whether to perform anti-Vascular Endothelial
Growth Factor therapy. However, it is time-consuming work to
analyze the images since OCT provides several images for each
patient. This paper proposes an ensemble learning (EL) model,
based on three deep learning models, that categorize patients’
OCT images into four categories such as Choroidal
neovascularization, Diabetic macular edema, Drusen, and
Normal. Four different Convolutional Neural networks (CNNs)
are adapted to train the images. Among them, three CNNs are
selected for the proposed EL model such as VGG19, ResNet152,
and DenseNetl121. Two different voting methods (soft and hard)
are also used in the proposed EL model. The proposed EL model
shows 0.9930 accuracy, 0.9930 sensitivity, and 0.9977 specificity.
New heatmap algorithm is also proposed, based on positive and
negative heatmaps, to analyze activity of CNN models and
estimate regions of interest from the OCT images accurately. The
proposed EL model and heatmap algorithms shows relatively good
performance compared to other CNN models and heatmap
algorithms. The proposed EL shows the potential to work as a
second reader for ophthalmologist.

Keywords—Deep Learning (DL), Ensemble Learning (EL),
Convolutional Neural Networks (CNNs), Heatmap, Optical
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L.

Optical coherence tomography (OCT) is a non-invasive test
to take cross-section pictures of retina layer [1].
Ophthalmologists use it to diagnose retina’s distinctive layers
and measure their thickness. Therefore, OCT images have been
an important modality for the detection and quantification of
retinal diseases and retina abnormities such as age-related
macular degeneration (AMD), diabetic macular edema (DME),
choroidal neovascularization (CNV), and drusen. Macular
thickness maps and OCT images can also provide guidance for
treatment response to anti-VEGF therapy for DME and AMD
patients [2]. Unfortunately, it is a time consuming work for
ophthalmologist to analyze the images since OCT provides
several images for each patient.

Deep learning (DL) has been adapted in medical data
analysis recently and shows robust performance compared with
existing image processing and machine learning algorithms. It is
also adapted in the segmentation and classification of OCT
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images. Li ef al. use VGG16 [3] to train OCT images to
categorize them into four classes [4]. Lu et al. adapt ResNet101
[5] to classify cystoid macular edema, macular hole, epiretinal
membrane, and serous macular detachment from OCT images
[6]. Li. et al. adapt EL based on ResNet50 [5] to classify the
images into the four classes [7]. Islam et al. train DenseNet201
[8] and ten other CNNs for the classification of OCT images
into four classes [9]. Kermany et al. use Inception V3 [10] to
classify OCT images into four classes such as CNV, DME,
Drusen, and Normal [11].

DL shows promising performance in the classification and
segmentation of medical images. However, there are issues
since the DL is a black box and does not provide any
interpretable explanations for their decisions. Therefore, there
are several studies to resolve this issue. Zeiler ef al. introduce a
visualization technique that reveals the input stimuli that excite
individual feature map at any intermediate layer in the model
based on Deconvolutional Network [12]. Zhou et al. show that
convolutional layers have ability to localize objects despite no
supervision on the locations of the objects. Later, they introduce
Class Activation Map (CAM) to visualize activity of the last
convolutional layers for localization/Regions of Interest (ROIs)
detection in image classification [13, 14]. It uses last
convolutional layer and weights connected between the last
convolutional layer and output layer for each class to generate
the map. Selvaraju et.al. adapt gradient information of an output
class to improve CAM and propose Gradient-weighted Class
Activation Mapping (Grad-CAM) to produce a localization
map highlighting the ROIs in the images accurately in image
classification [15]. The method can be applied in several CNN
models. Kim et al. propose a new map called Class-Selective
Relevance Map (CRM) [16]. CRM also uses last convolutional
layer and weights connected between the convolutional layer
and output layer for each class. It measures the importance of
the activation at each location in the feature maps by squaring
the difference between whole feature map activation value and
whole feature map value without using a value in the location.

Most CNNs include one or more dense layers between the
feature extractor and output layer, and understanding the weights
connecting the extractor and layer are critical to comprehend the
activity of CNNs. However, above heatmap methods do not
account for dense layers or do not demonstrate on CNNs with
dense layers.

There are positive and negative values in the feature map
for each class in image classification case. However, all these



methods [12-16] do not consider negative values in the map.
Negative value area for a class means that the area is not the
feature area for the class but can be feature areas for the other
classes. Therefore, when we generate separate feature maps for
positive and negative values for each class, we can analyze
activation of DL algorithms clearer and make better heatmap to
estimate ROIs from the map.

In this paper, we propose new approaches to classify OCT
images into four different classes (CNV, DME, Drusen, and
Normal) using EL, two voting methods, and three CNN
classifiers. We also propose a new heatmap, called Class-based
Positive Negative Map, to estimate ROIs for each class in
CNNss accurately, including those with dense layers.

The remainder of this paper is organized as follows: Section
II describes methods that we use, Section III describes our
experimental results and discussion in detail, and section IV is
our conclusion of findings.

II. METHODS

A. Dataset

An OCT image dataset publicly available is used in our
experiment [11]. The dataset is composed of 108,309 training
images and 1,000 test images. There are four classes in the dataset:
CNV, DME, Drusen, and Normal. Unfortunately, the training
dataset is imbalanced. There are 37,205 images for CNV;
11,348 images for DME; 8,616 images for Drusen; and 51,140
images for Normal. The largest class (Normal) is about six
times larger than the smallest class (Drusen). The test dataset is
composed of 250 images in each of the four classes. Fig. 1 shows
four images from each class in the dataset.

There are two boundaries of interest in the OCT image.
Inner Limiting Membrane (ILM) is the upper boundary of
retina layer (that separates the background from the retina
layer). Chorio-Scleral Interface (CSI) is the lower boundary of
the retina layer (that separates the retina layer from the
background). Retinal Pigment Epithelium (RPE) is the
brightest layer located in the middle between the ILM and CSI.
In Fig. 1, CNV shows variation in below/above RPE or intra-
retinal area (showing macular fluid in black color, bumpy RPE
layer, and poorly defined boundaries). DME has intra-retinal
fluids between ILM and RPE shown in dark color. Drusen has
deformation or thickening in RPE layer instead of a flat shape.

@
Figure 1. Some examples of OCT images in each class in the dataset (a) CNV,
(b) DME, (c) Drusen, and (d) Normal.
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B. Image Normalization in the Dataset

There are several different size and quality images in the
dataset. Fig. 2 shows examples of images in the dataset for
DME class. OCT images usually have a rectangle shape (Fig.
2(a)). However, majority images have a square shape (Fig 2(b)-
(d)). Most OCT images have black and white noises, but some
images have more serious noises (Fig. 2(b)) than normal
images. Several images have tilted retina layers as shown in
Figs. 2(c) and (d). Zoom ratio of each image varies and is not
consistent with one another. There are white background noises
in the several images.

(b) (
Figure 2. OCT images of the CNV class in the dataset.

Therefore, we perform several preprocessing steps to
improve the quality and consistency of the images in the dataset
as shown in Fig. 3. First, fill the white background to black
color in the image, and then make the image into a square shape
using the longest side of either height or width of the image.
Second, segment retina layer using the Fully Convolutional
Network (FCN) having a U-Nets architecture. Third, remove
background noise (pepper and salt noise) using the
segmentation results as a mask. Fourth, adjust the tilted retina
layer. Fifth, crop the retina layer from the image. Sixth, resize
the image into a square shape for the input of DL models for
the classification. For the FCN, inputs of the FCN are
224x224%3 color images and output are 224x224x1 gray
images. 1,000 images (250 images from each class) are used to
train the FCN. A detailed description of the process is described
in [17].

Remove White Pixels and
Make a Square Image

Input Image Segment Retina Layer

(TN
FCN (U-Nets) for

Retina Layer
Segmentation

—_

Remove Black and
White noises

Make a Square Image
for Input of DL Models

Crop Retina Layer

Adjust Tilted Retina
Layer

Figure 3. Preprocessing procedure to standardize OCT images.

C. CNN Models Used for Classification of OCT Images

Four DL models from ImageNet [18] are used as feature
extractors for the classification such as VGG19, ResNet50,
ResNet152, and DenseNet121. Fig. 4 shows the proposed CNN
architecture. After a feature extractor, six more layers are
added; global average pooling layer, two 1x1,024 fully
connected (dense) layers, two dropout layers, and 1x4 Softmax



output layer. Pre-trained weights of the ImageNet are used as
initial weights for training.

D. Proposed Ensemble Learning Model Based on Three
CNNs and Two Voting Methods

We propose an EL-based model using three CNNs as base
classifiers (see Fig. 4) to improve the performance. Fig. 5 shows
the architecture of the model. Unlike other EL models, two
different voting methods are used for the first time to our
knowledge: Soft Voting (SV) and Hard Voting (HV). SV
estimates average of the three CNN results (Eq. (1)) and HV
estimates average of CNN results after categorizing each CNN
result (Eq. (2)). After then, we estimate a weighted average of
the two voting results for the final model output as shown in
Eq. (3). The HV results can provide more impact for each CNN
results and SV compensates winner-take-all issue of HV.

n .
SV (X1, Xy, o, Xp) = % "
Lico Categorical Output(Xy
HV(Xl,XZ, ...,Xn) — Z2i=0 a egorlrcla utpu (2)
Hybrid Voting (Xy, X3, ..., X,) =
w X SV (X1, Xz ooy Xn) + (1 = w) X HV (X4, X5, .., Xn) (3)

In the equations, X; is output of a CNN model i, » is number of
CNNs, and w is a weight parameter (w=0.5 is used in this
experiment). X; contains four classification score values for the
four classes in this experiment. Categorical Output (X;) means
the maximum value in X; becomes 1 and the others become 0.

E. Proposed Class-based Positive Negative Map

Heatmap shows an activity of the DL model graphically for
an input image. However, all existing heatmaps (CAM, Grad-
CAM, and CRM) are implemented for CNNs without having
dense layer or do not consider all weights connecting the last
convolutional layer and output layer.

There are positive and negative values in the last
convolutional layer (last feature maps). The negative values in
a class can provide positive or negative impact to other classes
based on weights connecting between the convolutional layer
and output layer. However, existing methods do not consider
the role of negative values that exist between classes. CRM
treats the negative values the same as positive values by
squaring the values. In addition, the squaring method
intentionally increases gaps between high and low values in the
heatmap.

Therefore, we propose a new heatmap algorithm, called
Class-based Positive Negative Map (CPNM), that generates
positive and negative heatmap of each class and uses negative
heatmap of a class to improve final heatmaps of the other
classes. Fig. 6 shows the workflow of estimating the proposed
CPNM.

Our proposed CNN (Fig. 4) is composed of a CNN Feature
extractor, two dense layers, and a softmax output layer. The
output of last convolutional layer is the input of the first dense
layer, the output of the first dense layer is the input of the
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second dense, and the output of the second dense layer is the
input of the softmax output layer.
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Figure 4. CNN architecture used in the eipeﬁments.
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Figure 5. Proposed ensemble learning models used for the experiments.
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Figure 6. Proposed CNN weights used for the estimation of the proposed Class-
based Positive Negative Map (CPNM).

Therefore, a prediction score matrix of class i (P;) is estimated
as shown in Eq. (4). P; has the same row and column of the last
convolutional layer. P; (x, y) is the value at (x, y) in P;. Fig. 6
shows the architecture of the proposed CNN and variables used
in the equation.

M K

Z War,az(n k) X Waso(k, 1)
k=1
4)

where F,, is the mth feature map in last convolutional layer, and
M is the number of feature maps in the layer. Wy (m,n).is the
weight between the mth feature map in the last convolutional
layer and the nth neuron in the first dense layer, and W4 has
M=N dimension. Wy 4> (n,k) is the weight between the nth
neuron in the first dense layer and the kth neuron in the second
dense layer, and Wy;4> has NxK dimension. W o(k,i) is the
weight between the kth neuron in the second dense layer and

N
B ) Wyaa(m,m)
n=1

m=1



the ith neuron (class 7) in the output layer, and W, 0 has KxC
dimension.

From the Eq. (4), we estimate positive and negative CPNM
values of each class as shown in Egs. (5) and (6). P;,,s(x,y)
and P; .4 (x, ) mean positive and negative heatmap values of
class i at (x, y).

Pi,pos(x'y) = Pi(xry) if Pi(xry) >0 5)
Pi,pos(x:)’) =0 if Pi(x,y) <0
Pi,neg(xﬂy) = |Pi(x'y)| if Pi(x'y) <0 (6)

if Pi(x,y) >0

The positive value areas in P; ., mean the areas are not used as
feature areas for the class 7, but the areas can be used as feature
areas for the other classes. However, P; n.; does not provide
information of the classes related to the areas. Therefore, a
mask is used to provide positive effect to specific classes.

The mask M is a matrix of 1 and O (true and false). If the
P; ,05(x,y) is greater than a threshold # (1 = 0.25x max (Pipos,
P;no) in this experiment), the mask Mi(x, y) becomes 1,
otherwise it becomes 0.

ML' (X,}’) = 1!
Mi (va’) = 0'

Pi,neg(xr}’) =0

if Pi,pos(xt Y) =t (7)

if Pi,pos(x;Y) <t

Based on Egs. (4)-(7), we propose the following formulas to
generate a new heatmap, called CPNM as shown in Egs. (8) and
(9). Eq. (8) shows the proposed heatmap value for class i at (x,))
and Eq. (9) shows combined values for all classes at (x,)).

(4

CPNM; (4,) = Pipos(t,) X Miw9) X [ | Pines 29

j=0,j%i
©)

©)

C
CPNM (x,y) = Z CPNM; (x,y)

=1

where C is number of classes. Since CPNM; (X, y) is based on
multiplication, CPNM; (X, y) can become zero if one of values
in the heatmaps becomes zero. Therefore, value one is added to
P pos(x, y) and P;ee(x, ) to resolve the issue.

Fig. 7 shows the examples of CPNM of a CNV class image
estimated from the proposed CNN based on DenseNetl121
extractor. Each column shows heatmaps for each class. The first
row shows positive heatmaps (P;pos), the second row shows
negative heatmaps (P neg), and the last row shows the proposed
heatmaps (CPNM;). The image in the first row first column is
the positive map (P;pos) of CNV class. The heatmap shows that
proposed CNN generates strong activities to CNV class and no
activity to DME, Drusen, and Normal classes. The negative
heatmap (Pj.e) in the second rows show activity to DME,
Drusen, and Normal classes. Among them the heatmap of the
Drusen class shows the moderate activity. It means that the
active area should not be used as features for Drusen class. The
last row shows the final proposed heatmap for each class
(CPNM;). Only the map of CNV class shows activities.
Compared with the positive heatmap (first row first column)
and final map (last row first column) of CNV class, the
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proposed heatmap focuses more on specific area in the image
and allow us to crop ROIs for CNV easily.

Fig 7. Example of heatmaps from DenseNet121. The first row shows positive
heatmaps (P pos), the second row shows negative heatmaps (P neq) of each
class, and the last row shows the proposed heatmaps (CPNM).

I1I. EXPERIMENTAL RESULTS AND DISCUSSION

A. Training Dataset Generation and Training Parameters

The training dataset has unbalanced number of images in
between classes. Therefore, we generate training sets by
sampling five different number of images (2,000, 3,000, 5,000,
6,000, and 8,616) from each class using random sampling
method and train CNNs (Fig. 4) using the training sets. The pre-
trained weights from ImageNet are used as initial weights and
all CNN weights and layers are trained again including the two
new dense layers and one output layer.

Python and Keras with TensorFlow [19, 20] is used to
implement the CNN models and stochastic gradient descent
with learning rate = 0.001, decay=1e-6, momentum = 0.9 and
nesterov momentum = True are used for training. We use
epochs = 10~100 and choose the weight with the highest
accuracy during the training as the final weight. The hardware
configuration used for this experiment is 2 x Intel Xeon Gold
5218 processors 2.3 GHz, 64 hyper-thread processors, 8 x RTX
2080 Ti, and Red Hat Enterprise Linux 7.

B. Performance for the Proposed CNNs

Table I shows the performance (accuracy) of each CNN
model estimated from the test dataset containing 1,000 images.
The first column (Class size) shows number of training images
per each class, and the remaining columns show the
performance of each CNN model. In the first row, 2,000 means
2,000 images are randomly selected from each class. Since
there are four classes in the dataset, total number of images used
for training is 8,000. The same rules are applied to all other
rows. VGG19 has the best performance at Class size = 2,000
with 0.9860 accuracy. ResNet50 has the best accuracy of
0.9730 at Class size = 6,000. ResNetl52 has the best
performance at Class size = 8,616 with 0.9810 accuracy.



DenseNet121 also has the best performance of 0.9810 at Class
size 6,000 and 8,616. Overall, VGG19 shows the best
performance.

TABLE I. COMPARISON OF THE PROPOSED CNN MODELS
Class size
(per each VGG19 ResNet50 | ResNetl52 | DenseNetl121
class)
2,000 0.9860 0.9620 0.9480 0.9660
3,000 0.9740 0.9700 0.9730 0.9750
5,000 0.9780 0.9710 0.9750 0.9710
6,000 0.9760 0.9730 0.9730 0.9810
8616 0.9750 0.9700 0.9810 0.9810

C. Performance of the Proposed Ensemble Learning Model

EL is commonly used in machine learning to improve
classification accuracy since it uses the results of multiple
machine learning algorithms [21]. Bootstrap aggregating
method (or bagging) lets each model to vote or average the
results from all models to improve the classification accuracy.
Unlike other EL models, that use either voting or averaging, the
proposed EL uses the hybrid voting method (SV and HV) as
shown in Fig. 5. Table II shows the performance of the
proposed EL model. The EL based on the three CNNs in Table
IT shows the improvement with 0.9930 accuracy, 0.9930
sensitivity, and 0.9977 specificity.

Table IIT shows the comparison of the proposed EL method
with other existing DL methods. Among them, the method using
ResNet50 (third row) and our proposed methods use EL
methods. The remaining methods use one or more multi-class
classifiers. It shows that the proposed EL models shows better
performance compared to the other methods.

TABLE II.  PERFORMANCE OF THE PROPOSED TREE CNN MODELS AND
ENSEMBLE LEARNING METHOD.

Model Acc. Sen. Spec.
VGG19 0.9860 | 0.9860 0.9954
ResNet152 0.9810 | 0.9810 0.9936
DenseNet121 0.9810 | 0.9810 0.9937
Proposed EL using Hybrid 0.9930 0.9930 0.9977
Voting (w=0.5)

TABLE III. COMPARISION OF THE PROPOSED ENSEMBLE LEARNING
METHOD WITH OTHER ALGORITHMS.
Method CNN Acc. Sen. Spec.
Lu et al. [6] ResNet101 0.959 0.942 0.964
Kermany et al [11] Inception V3 0.966 0.978 0.974
Lietal [7] EL with 0.979 0.968 0.994
ResNet50
Islam et al. [9] DenseNet101 0.986 0.986 0.995
Li et al. [4] VGGI16 0.986 0.978 0.994
Proposed Ensemble | EL with 0.993 0.993 0.998
Learning VGG19
ResNet152
DenseNet121
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D. CPNM of the Proposed EL Model

Fig. 8 shows heatmaps (CPNM;) generated by the three
CNNs used in the proposed EL model. The first row (a) shows
heatmaps of an image of CNV class. All heatmaps show strong
activity in similar area, and the heatmap of ResNet121 shows
activity in another area also. For the DME class image in the
second row (b), all heatmaps show a high level of activity in
similar areas.

We compare our heatmaps with CAM and CRM since CRM
shows similar or better performance than Grad-CAM [15].
Since CAM and CRM are implemented for CNNs without
dense layer, we cannot compare our heatmap with them
directly. Therefore, we have modified CAM and CRM to
generate heatmaps from CNNs with multiple dense layers based
on our proposed algorithm.

Fig. 9 shows heatmaps generated using the DenseNet121-
based CNN for input images belonging to the CNV and DME
classes. The first and second rows show heatmaps of modified
CAM and CRM, and the third row shows the proposed
heatmaps. Fig. 9 (a) and (b) shows heatmaps of input images of
CNV and DME classes, respectively. In both examples,
proposed heatmaps show strong activity only at the right classes
in more specific areas and enable us to estimate more accurate
ROIs for each disease.

VGGI19 [ ResNetl52 | DenseNetl21
Figure 8. CPNM; estimated by three CNNs for images of CNV and DME
classes. (a) Input image of CNV class. (b) Input image of DME class.
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Figure 9. Comparison of the proposed heatmap (CPNM;) with CAM and CRM.
In (a) and (b), the first and second rows are the heatmaps of CAM and CRM
modified based on CPNM, and the third row is heatmaps of the proposed
CPNM,;. The heatmaps are generated using the DenseNet121-based CNN for
input images belonging to the CNV class (a) and DME class (b).

Normal

CNV | Drusen |

Iv.

This paper proposes an EL model to classify OCT images into
four categories using three CNNss as base classifiers. We use the pre-
trained weights on the ImageNet as initial weights and train all
weights and layers including two new dense layers and one output
layers in our base CNN classifier. Four different CNN models and
five different sizes of training datasets are used for training the base
classifiers. Among them, VGG19 shows the best performance with
0.986 accuracy, 0.986 sensitivity, and 0.9954 specificity. The
proposed EL model, based on the three different CNNs (VGG19,
ResNet152, and DenseNetl121) and two voting methods, shows
more robust results with 0.9930 accuracy, 0.9930 sensitivity, and
0.9977 specificity. We also proposed a new heatmap based on
positive and negative heatmap of each class, called CPNM, for the
first time to our knowledge and show that CPNM estimates ROIs
more accurately compared with other methods. In future work, we
plan to further investigate new architectures of the DL model
and handcrafted features to improve classification accuracy. In
addition, we will investigate heatmap algorithms further to
estimate ROIs more accurately.

CONCLUSIONS
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