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Abstract

This paper explores an approach for extracting scene text
from a sequence of images with relative motion between the
camera and the scene. It is assumed that the scene text lies
on planar surfaces, whereas the other features are likely
to be at random depths or undergoing independent motion.
The motion model parameters of these planar surfaces are
estimated using gradient based methods, and multiple mo-
tion segmentation. The equations of the planar surfaces,
as well as the camera motion parameters are extracted by
combining the motion models of multiple planar surfaces.
This approach is expected to improve the reliability and ro-
bustness of the estimates, which are used to perform per-
spective correction on the individual surfaces. Perspective
correction can lead to improvement in OCR performance.
This work could be useful for detecting road signs and bill-
boards from a moving vehicle.

1 Introduction

There is a considerable amount of text occurring in video
that is a useful source of information. The text that occurs
naturally in the 3-D scene being imaged is called scene text.
The scene text can have any orientation, and its image will
be distorted by perspective projection in addition to being
subject to the illumination conditions of the scene and sus-
ceptible to partial occlusion by other objects. There has
been very little research on extracting scene text from gen-
eral purpose video. The research that resembles this work
the most is on recognition of vehicle license plates [4, 5].
However, these make restrictive assumptions about the text
occuring in the scene.

Scene text typically exists on a planar surface in a 3-D
scene. As the camera or the object moves, the motion of the
text features should satisfy planar motion in 3-D. This re-

search exploits this property to separate text features from
features due to other objects which are likely to be at dif-
ferent random depths, and thus do not satisfy the planar
constraint. A sequence of images can be used to segment
different planar surfaces in the image, determine the model
parameters, and remove outliers corresponding to clutter
which do not fit any such surface, or is in motion with re-
spect to these surface. The model parameters along with
their estimated covariances can be used to determine the
camera motion in terms of the linear and angular velocity,
and the scene structure in terms of the plane normal equa-
tions. Since the camera motion parameters are the same for
all planar surfaces, these parameters, as well as the plane
normals of multiple planar surfaces are combined by using
linear and non-linear methods. Using the estimated plane
normals, the perspective effect of the camera on the char-
acters can be compensated. This step would improve the
accuracy of Optical Character Recognition (OCR).

2 Planar Motion Model

Let X = (X0; X1; X2)
t be the 3-D coordinates of a

point in the camera coordinate system, in which theX0 axis
is the optical axis of the sensor. The perspective projection
of the point in the image plane is given by:

�
x1
x2

�
=

1

X0

�
X1

X2

�
(1)

Let the relative motion between the camera and the scene
be modeled by a translational velocity of V = (V0; V1; V2)

t

and a rotational velocity of W = (W0;W1;W2)
t. If the

point lies on a planar surface with a normal along vector
K = (K0;K1;K2) with an equation of KtX = 1, the
theoretical image motion such a point can be written as:

û1 = a1 + a3x1 + a5x2 + a7x
2
1 + a8x1x2

û2 = a2 + a4x1 + a6x2 + a7x1x2 + a8x
2
2 (2)
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where the vector of eight coefficients a = (a1 : : : a8)
t

called the planar motion model parameters can be expressed
in terms of V , W , and K.

The 8-parameter equation given above is sufficient to
represent the motion of a planar surface. However, the es-
timation of the quadratic parameters (a7; a8) may not be
robust if small parts of the image are used. Hence, other
models may be used in intermediate stages of segmenta-
tion. For example, the 6 parameter affine model – i.e., with
a7 = a8 = 0 – is frequently used for motion segmentation.

3 Estimation of Model Parameters

The model parameters of planar motion can be estimated
by using the image gradients and the optical flow constraint
in parametric form as in [2]. Under favorable conditions,
the temporal gradient g0 and the spatial gradients g1 and g2
satisfy the following optical flow constraint equation:

g0 + g1u1 + g2u2 = 0 (3)

where u = (u1; u2)
t is the image motion of the pixel. This

constraint can be expressed as a minimization problem, and
a least squares approach can be used to minimize the error
in this constraint to estimate the motion model parameters,
as well as their covariance �a.

Direct application of this gradient based method yield
accurate results only when the image motion of the pixels
is less than 1 to 2 pixels per frame. To deal with larger
image velocities, pyramid approach [2] is used. The model
parameters are estimated from image gradients computed
at the each resolution. These parameters are then used to
warp the images at the next finer resolution. The process is
repeated until the finest resolution is reached.

4 Multiple Motion Segmentation

Under ideal situations, where all image motion vectors
result from a single planar surface motion and the noise in
image gradients is Gaussian, a least squares fit approach
gives an optimal estimate of the model parameters. How-
ever, even a few outliers, usually not belonging to the pla-
nar surfaces, can spoil the accuracy of the estimates. The
problem is worse when the image contains multiple planar
surfaces; the least squares approach if used directly, yields
an ‘average’ estimate using all the surfaces. For obtaining
reliable estimates of parameters, the image should be seg-
mented into parts before applying the least squares. How-
ever, this is a chicken and egg problem, since the segmen-
tation is what one wants to obtain by analyzing the image
motion.

A considerable amount of work has been done on seg-
menting a scene into planar surfaces. Adiv [1] used Hough

transform to map the image motion vectors into bins corre-
sponding to the affine motion model. Bouthemy and Fran-
cois [3] use a two-term energy function, and a relaxation
algorithm partitions the image into regions with different
motion models. Black [2] uses a robust objective function
with a multi-scale pyramid approach, and a spatial coher-
ence constraint. In this ongoing work, the split and merge
framework is being used for interactive segmentation.

5 Structure and Motion Parameters from
Planar Surfaces

Using the motion model parameters (a), one can com-
pute the structure (K) and motion (V;W ) parameters us-
ing the well known method described in [8]. It should be
noted that the internal parameters of the camera are required
for determining the structure and motion parameters. There
are two sets of linearly independent solutions for K and
V , causing an ambiguity in structure and motion. In addi-
tion, there is an ambiguity due to the magnitude as well as
the sign of the scale factor. The solutions corresponding a
particular sign of the scale factor in each case correspond
to objects lying behind the camera, and can be eliminated.
The magnitude of the scale factor can then be overlooked
by considering the solution where V is a unit vector. In
the case of the scene containing multiple planar surfaces,
the linear and angular velocities of the camera are identical
for all the surfaces. If these parameters are determined by
the above method, the constraint is not utilized, and each
planar surface would give rise to different estimates of the
camera motion. Furthermore, a single set of motion model
parameters give rise to two sets of solutions for structure
and motion parameters.

Use of image motion to directly estimate the struc-
ture and motion parameters have been previously proposed.
Horn [6] describes the method to determine the camera mo-
tion as well as depth of all the scene points using the optical
flow of the points for a general scene. Factorization meth-
ods [10] are also used to determine the structure and mo-
tion parameters from multiple frames, especially for ortho-
graphic and para-perspective motion models. However, it is
noted that these methods require the knowledge of the full
image motion. The direct use of image gradients instead of
full optical flow makes the problem under-constrained [6],
requiring smoothness constraints.

In this work, a piecewise planar model is assumed in-
stead of a general scene to get the required smoothness con-
straint. The input to this algorithm are the motion model
parameters of all the planar surfaces, computed indepen-
dently using multiple motion segmentation. The algorithm
combines these parameters to increase the accuracy of the
structure and motion parameters, and removes the ambigu-
ity due to multiple solutions.
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Let the motion model parameters of each planar surface
be given by ai, and the respective plane normal vectors be
Ki. These, as well as the camera motion parameters V and
W can be stacked as follows:

~A =

2
6664
a1

a2

...
an

3
7775 ; ~K =

2
6664
K1

K2

...
Kn

3
7775 ; ~L =

�
W

V

�
; ~P =

�
~K
~L

�

(4)
The parameters ai can be expressed in terms of V , W , and
Ki as non-linear functions. However, these functions can
be decoupled to obtain expressions in the following two
forms for all planar surfaces i = 1 : : : n:�

G2 G3(K
i)

�
~L = ~ai (5)

G1(~L)K
i = ~ai �

�
G2 O8�3

�
~L (6)

where G1, G2, and G3 are 8 � 3 matrices, and O8�3 is a
zero matrix. If the dependencies in G’s are neglected, the
equations become linear in L and Ki, respectively, and can
be iteratively solved using linear least squares. The system
can be solved by solving equations 5 and 6 using linear least
sqaures one after another repeatedly until convergence. The
solutions obtained individually from planar surfaces can be
used as starting solutions. However, the objective function
which is optimized by this procedure does not correspond
to the physical objective function to be minimized which is:h

~A� f(~P )
it
��1
A

h
~A� f(~P )

i
(7)

subject to:
2 c(~P ) = V tV � 1 = 0 (8)

where f denotes the function which computes ~A from the
structure and motion parameters combined in the vector
~P . The above expression is minimized by iteratively incre-
menting ~P+, formed by stacking the Lagrange parameter �
to ~P , using the following equation:

�~P+ =

�
�~P

��

�
=

�
Q Ct

C 0

�
�1 �

F t��1
A

� ~A

0

�
(9)

where F and C denote the Jacobians of the functions f
and c, respectively, and Q = F t��1

A
F . In actual prac-

tice, the non-linear iterations do not improve the accuracy
significantly. However, the concept is useful for estimat-
ing the sensitivity of the parameters in ~P . If the vector
~A has an error � ~A, the optimal solution changes by �~P

to the first order approximation. From equation (9), using
E[� ~A� ~At] = �A, the covariance of ~P+ is approximately
given by:

�P+ = E[�~P+�~P t

+]

=

�
Q Ct

C 0

�
�1 �

Q 0
0 0

� �
Q Ct

C 0

�
�1

(10)
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Figure 1. Distortion in perspective correction

The covariance of ~P is obtained by deleting the last row
and column of �P+ corresponding to the Lagrange parame-
ter �. For optimal estimation, the non-linear method can
be applied after the linear method desscribed above. It
should be noted that the velocity component V is normal-
ized whenever it is updated, and the structure components
Ki are correspondingly scaled.

Once the plane normal parameter for each surface is
known, the surfaces can be rotated so as to face the camera
axis. The rotation is performed around the axis perpendicu-
lar to the camera axis as well as the plane normal. This oper-
ation compensates for the perspective distortion. However,
the rotation around the camera axis cannot be compensated
using this method.

Furthermore, the effect of any error in the plane normal
parameter results in larger error in certain parts of the im-
age. This is illustrated in Figure 1, which shows the per-
spective distortion of a square grid due to the error in the
estimate of the camera normal. The lines intersect at van-
ishing points whose distance from the origin is inversely
proportional to the plane normal error. It can be seen that
the distortion is worst at points that are far from the origin
which corresponds to the point where the normal from the
camera center intersects the plane.

6 Results

The application of the planar fit was tested on a number
of simulated image sequences containing text or other pat-
terns on planar surfaces. The translation, rotation and mo-
tion parameters of the camera, as well as the plane normal
parameters were pre-specified.

The following experiment shows the result of estima-
tion of plane normal, and its use in correcting the perspec-
tive distortion of the planar surfaces. The scene consists
of two planar surfaces on both sides of the camera. The
camera axis is parallel to these surfaces, and the camera is
moving with a uniform linear velocity along its axis. Fig-
ure 2 (a) and (c) show the text surfaces on two sides of
a camera, and an image frame obtained after projection is
shown in Figure 2 (b). Using the sequence of images, the
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Figure 2. Perspective correction for simulated
image sequence.

motion model parameters were obtained separately for the
two halves of the image. The plane normal vectors were
extracted from these parameters. The error in the plane nor-
mal estimate in terms of the angle between the estimated
and actual normal vector is around 3:5� and 4:7� in the left
and right planes respectively. The two parts of the image
warped separately to correct for the perspective distortion.
The corrected images are shown in Figure 2 (d) and (e). Al-
though the error in the planar normal is small, the correction
is somewhat imperfect, since the part of the plane that is im-
aged is very far from the normal through the camera center.
However, it is much better than the perspective projection
image of Figure 2 (b).

(a) (b)            

(c) (d)

Figure 3. Segmentation of a real image se-
quence with poster containing text.

The segmentation procedure was tested on real image se-
quences captured using a hand-held video camera. A sam-
ple image in an indoor scene is shown in Figure 3 (a). The

scene contains a poster with text characters, pasted on a
window with the camera moving towards the poster. The
background outside the window is at a large distance. In this
scene, the segmentation picks up the poster as the dominant
motion. In the next phase of segmentation, background is
separated as another layer. However, background due to a
perpendicular wall on the left is not separated, since it does
not have enough features. The window bars are classified
with the poster, since it is almost at the same depth as the
poster. The segmentation is shown in Figure 3 (b). The
image motion shown in Figure 3 (c) shows that the poster
(except near the focus of expansion) as well as the window
have larger motion than the distant background. Figure 3 (d)
shows the detected outliers in each region which could make
the parameter estimation unreliable. Figure 4 shows the
corresponding results for an outdoor scene captured from
a moving bus. The scene contains a “STOP” sign with a
distant background. In this case, the segmentation picks up
the background as the dominant motion, and separates the
traffic sign in the next step. However, some pixels in the
other parts of the image are mis-classified to belong to the
planar surface, possibly because they may be lying close
to the plane of the traffic sign. However, these pixels are
isolated, and can be easily separated by performing con-
nected component analysis and reclassifying small compo-
nents. Also, the uniform areas of the sign are not classified
properly, since the image motion in these regions cannot
be estimated. Figure 5 (a) and (b) shows the images ob-
tained after the perspective correction of the text segments
in Figures 3 and 4, respectively. Focal length of the cam-
era, given in the instruction manual was used for performing
these corrections. In the case of the indoor scene, the cor-
rection is somewhat imperfect. The possible reasons could
be the large distance of the plane normal through the camera
from the field of view (see Figure 1), or an error in the focal
length. The outdoor scene shows a satisfactory correction
of the perspective distortion.

7 Summary and Future Work

This paper explores a novel approach to extract scene
text from an image sequence with relative motion between
the camera and the scene. The scene text was assumed to
lie on planar surfaces, and planar motion model describing
their motion was used to estimate the model parameters.
The normal vectors of multiple planar surfaces with com-
mon camera motion were combined using linear and non-
linear approaches. These normal vectors were then used for
correction of perspective distortion. This work can be use-
ful in separating planar surfaces containing scene text from
cluttered background, for example, to detect road signs and
billboards from a moving vehicle.
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(a) (b)            

(c) (d)

Figure 4. Segmentation of a real image se-
quence from an outdoor scene containing a
“STOP” sign in distant background.

                        

(a) (b)

Figure 5. Resulting perspective correction
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