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ABSTRACT 

Biomedical images are invaluable in establishing diagnosis, acquiring technical skills, and implementing best practices in 
many areas of medicine. At present, images needed for instructional purposes or in support of clinical decisions appear in 
specialized databases and in biomedical articles, and are often not easily accessible to retrieval tools. Our goal is to 
automatically annotate images extracted from scientific publications with respect to their usefulness for clinical decision 
support and instructional purposes, and project the annotations onto images stored in databases by linking images 
through content-based image similarity. 
 
Authors often use text labels and pointers overlaid on figures and illustrations in the articles to highlight regions of 
interest (ROI). These annotations are then referenced in the caption text or figure citations in the article text. In previous 
research we have developed two methods (a heuristic and dynamic time warping-based methods) for localizing and 
recognizing such pointers on biomedical images. In this work, we add robustness to our previous efforts by using a 
machine learning based approach to localizing and recognizing the pointers. Identifying these can assist in extracting 
relevant image content at regions within the image that are likely to be highly relevant to the discussion in the article 
text. Image regions can then be annotated using biomedical concepts from extracted snippets of text pertaining to images 
in scientific biomedical articles that are identified using National Library of Medicine’s Unified Medical Language 
System® (UMLS) Metathesaurus. The resulting regional annotation and extracted image content are then used as indices 
for biomedical article retrieval using the multimodal features and region-based content-based image retrieval (CBIR) 
techniques. The hypothesis that such an approach would improve biomedical document retrieval is validated through 
experiments on an expert-marked biomedical article dataset. 
 
Keywords: Biomedical image analysis, biomedical article retrieval, content-based image retrieval, image overlay 
extraction, pointer symbol extraction, figure caption text analysis 
 

1. INTRODUCTION  

 
Clinicians and medical researchers routinely use online databases such as MEDLINE® to search for bibliographic 
citations that are relevant to a clinical situation. The biomedical evidence they seek is available through clinical decision 
support systems (CDSS) that use text-based retrieval enhanced with biomedical concepts. However text information is 
sometimes insufficient in determining the usefulness of a publication. Authors of biomedical publications frequently use 
images to illustrate the medical concepts or to highlight special cases. These images often convey essential information 
and can be very valuable for improved clinical decision support (CDS) and education. The text-based retrieval of the 
images has, so far, been limited mostly to caption and/or citation information. To be of greater value, images in scientific 
publications need to be first annotated (preferably, automatically) with respect to their usefulness for CDS to help 
determine relevance to a clinical query or to queries for special cases important in educational settings [1-3].  
 
This article discusses a method for multimodal image annotation that utilizes (i) image analysis techniques for 



 

 

localization and recognition of author provided overlays on the images; (ii) image feature extraction methods for content-
based image retrieval (CBIR); (iii) natural language processing techniques for identifying key terms in the title, abstract, 
figure caption, and figure citation (mention) in the article; and (iv) use of structured vocabularies, such as the National 
Library of Medicine’s Unified Medical Language System (UMLS ®), for identifying the biomedical concepts in the text. 
As discussed in earlier works [4,5], these steps can be used to associate the biomedical concepts in the text to specific 
regions in the image. The relevance to a clinical query is aided by this addition of semantic information to extracted 
image features for improved CBIR. Traditionally, CBIR tends to be limited to use of visual features in identifying 
similarity among a collection of images. This has spurred discussion on the “semantic gap” [6] that is introduced when 
high-level concepts are represented through low-level visual features such as image color, and texture (for example). 
Such a semantic gap can be minimized through annotation by biomedical concepts that are extracted from the article text 
and applied to relevant regions within an image. 
 
Conventional approaches for biomedical journal article retrieval have been text-based with little attention devoted to the 
use of images in the articles. Figure 1 tries to encapsulate this conventional approach and place it in context with the 
proposed multimodal method. Text-based retrieval is shown in the upper part of the Figure 1. The middle shaded blocks 
show our proposed retrieval approach modeled as a cascaded application of text and image feature matching methods. 
The hypothesis is that text retrieval can be very valuable in identifying relevant articles. Image regions of interest (ROI) 
are extracted by localizing and recognizing image annotations (such as pointers, symbols) overlaid by authors to indicate 
the ROIs and mentioned in image captions and discussions. The ROIs can then be used to rank the relevant articles 
identified by the text retrieval by measuring region-based image similarity.  
 
General content-based image retrieval (CBIR) also could be improved by the proposed approach in a similar manner as 
text-based retrieval is improved. In this case no text information is available, but only visual features are used. The CBIR 
identifies relevant articles as text-based retrieval does in the multimodal method. Annotations and ROIs in retrieved 
images can be identified by the annotation recognizer and then be used to re-rank the results. The bottom part of the 
Figure 1 shows a general CBIR approach followed by the proposed annotation analysis.   
 
This article presents our new method for localizing and recognizing such image annotation overlays, such as pointers, 
(shown as MRF recognizer in Figure 1) and develops all components of the proposed framework as a pilot to the 
development of an extended retrieval system. The retrieval of images and linked articles will be demonstrated and 
improvement in their retrieval will be measured against text-only approaches. The remainder of this article is organized 
as follows. Section 2 provides a brief background of our previous work on the proposed retrieval system. Section 3 
describes the method and challenges in this research. Section 4 presents evaluation results of pointer recognition and 
retrieval test and section 5 discusses conclusions and future work. 
 

Figure 1. Overview of biomedical journal article retrieval system 



 

 

2. BACKGROUND 

 
In our earlier work on coarse automatic indexing of images by modality (color image, gray-scale image, graph, graphic 
illustration, etc.) and image utility (suggested by the Evidence Based Medicine paradigm’s six elements of a clinical 
scenario that an image might illustrate), we combined image and textual features in a supervised machine learning 
approach. Textual features were obtained from the captions to the images and paragraphs of text containing discussion 
(“mentions”) of these images. In addition to image captions and mentions, more image-related information may appear 
in the title, abstract, and MeSH terms (assigned by expert indexers to describe the publication and provided in 
MEDLINE citations) [2]. Texture features were computed as a 3-level discrete 2-D Daubechies wavelet transform. The 
four most dominant colors were computed in the perceptually uniform CIE LUV color space and proved most effective. 
At this coarse level of granularity, a multi-class SVM classifier trained on a bag-of-words representation of image 
captions performed better in determining image modality (84.3% ± 2.6% accuracy) than when trained on a combination 
of textual and image features or features reduced to the domain specific vocabulary. For image utility, however, the 
combination of image and textual features was better than any single-source feature set achieving 76.6% ± 4.2% 
accuracy [1].  
 
Figure 2 shows image annotation and retrieval processes [3]. We combined our tools and those publicly available in a 
pipeline that starts with text and image pre-processing and ends with retrieving images that are ranked by relevance to a 
given information need or annotated as relevant (Tools developed by the authors are shown in double-bordered boxes). 
In this work, we compare the efficacy of these two approaches in finding clinically relevant images.   
 
Our previous approach to locating and recognizing pointers in biomedical images proposed a two-step method: (i) 
pointer segmentation, and (ii) pointer classification [4]. The pointer segmentation step applied edge detection to an input 
image and then binarized the edge image. Chain coding scheme followed by line segment extraction from the chain 
coded boundary was introduced to extract the pointer boundary. Then several boundary pre-processing methods were 
applied to handle the affine transformations. Dynamic time warping (DTW) based line segment matching was used in the 
pointer classification step. Two line segments, one from the input boundary and the other from the pointer template, were 
compared and similarity score of two boundaries was obtained from the DTW distance table. The method was evaluated 
using commonly used measures: missed detection and false hit. Main causes of the missed detection were identified as 
weak edges and errors in the rotation axis detection. The line segment approximation and the DTW matching algorithm 
were primarily responsible for the false hits. Overall, the method resulted in an average precision of 92.3% and 75.3% 
average recall.  

 
Figure 2. Image annotation and retrieval processes 

3. METHODS 
3.1 Challenges 

We have recently developed a template matching-based pointer recognition method as mentioned in section 2. Our prior 
work showed fairly good performance on some types of pointers such as (straight) arrows and arrowheads; however, it 
showed some limitations as well on many curved arrows that are frequently used in biomedical images. We identified 
two main challenges in developing the pointer recognition algorithm based on our prior work and research to date. 

  



 

 

i) Arbitrary pointing direction: One of the most difficult tasks is how to handle the rotation problem. Pointers may 
indicate arbitrary directions and finding the pointing direction was an important step in our prior work. We 
failed to recognize a pointer unless we found its rotation axis, and rotated the pointer correctly to match with the 
templates. Many model-based object detection and recognition approaches consider the rotation problem. 
Solutions include defining rotation-invariant features and the range of rotations that object models can handle 
[7].   

ii) Variety in pointer shape: From our text analysis results we found that three terms viz., (straight) arrow (SA), 
curved arrow (CA), and arrowheads (AH), are frequently used in figure captions and text discussion to call the 
pointers used in biomedical images. Besides those arrow type pointers, symbols such as asterisks are used 
frequently. Figure 3 shows various curved arrows. We may find more curved arrows not shown in the figure 
and the number may increase. 

       
Figure 3. Various curved arrows 

 
3.2 Pointer recognition method 

We propose a Markov random field (MRF)-based method to address the challenges. MRFs have been widely used in 
image analysis and successful for some applications such as texture analysis [8], image segmentation [9], image 
restoration [10], and binarization [11]. Most of the successful applications, however, are tasks of low-level image 
analysis, where the features are derived from image pixel intensity. Relatively less research has been done in high-level 
vision tasks such as object matching and recognition [12]. Here, one deals with more abstract features such as critical 
points, line segments, and surface patches/regions. 
 
In our MRF framework, we model a pointer boundary as a random field which consists of a number of line segments. A 
pointer boundary is approximated by a set of line segments and there exist some contextual dependencies among 
neighboring line segments. Instead of defining pointer models and modeling the contextual dependency among all line 
segments in a pointer similarly as other methods did, we identified several boundary parts consisting of three consecutive 
line segments (part unit) and found frequently from the pointers, and created labels for them. Also contextual 
dependency between local segments and their labels are established and used as prior knowledge in our MRF model. A 
line segment will be labeled by i) identifying several similar boundary parts (i.e., candidates) in the label set with the line 
segment and its neighboring segments, ii) examining its relationship with neighboring segments and their labels, and iii) 
finding an optimal label (as part of an optimal labeling configuration) through the MRF model.  
 
Since we label a line segment based on its neighborhood and do not use any pointer model, an unknown boundary cannot 
be identified directly from the MRF labeling result, i.e., labeling configuration, no matter how well the line segments are 
labeled. Hence a method such as classifying a labeling configuration into a proper object class is needed. A hidden 
Markov model (HMM)-based labeling configuration classifier is implemented in our method [13]. We observed that 
labeling configurations from a same pointer class consist of similar labels and their sequence is very similar, but quite 
different from those of other classes. The labeling configuration is used as a data sequence of HMM, and we found that 
HMM is suitable for our purpose.  
 
Our combined MRF-HMM labeling-classification method has some benefits compared to the other MRF-based object 
detection/recognition methods [14, 15]. Defining proper pointer classes in our application may not be easy since the 
variation in shape is quite large as shown in Figure 3. Even if some of them can be grouped and handled by the same 
class, deciding which pointers belong to the same class is not a simple task either. Moreover it is almost impossible to 
find and include all pointers used in biomedical images in our training set. For these reasons pointer model-based 
approaches could not be the best solution even though they have been widely used in many other applications. Also, as 
mentioned before, arrow type pointers share many parts of their boundary shape with other shapes. This means feature 
extraction and classification using boundary parts may be much easier than doing the same thing with the whole 
boundary.  
 
For the optimization in our MRF labeling, belief propagation (BF) is applied to find an optimal labeling configuration. 
Eq. 1 shows the belief bi(fi) and message update rule. 
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where Zi

-1 and αi,j are normalizing constants. fi is the label of segment i and ri(fi) and ri,j(fi, fj) are unary and binary 
compatibility functions, respectively. All the terms and related issues will be discussed below.  
 

Pre-processing   

The pre-processing methods used in our prior work [4] are used with our new pointer recognition method. A polygon 
approximation function in Intel Open Source Computer Vision Library (OpenCV) [16] was used to extract line segments 
from the chain coded boundary. 
 

Label set 

Figure 4 shows 43 labels defined in our method. The numbers used as labels have no specific meaning other than the first 
digit is same for the line segments from the same part of the pointer shape, e.g., 3xx for line segments in arrow tail. A 
label is assigned to the middle segment (shown as a solid line) of a three adjacent segments in consideration. The layout 
of the neighboring segments (shown in dashed line), in relation to the middle segment determines the label.  

 
Figure 4. Label set defined from pointers 

 

Neighborhood system 

Neighborhood system Ni includes two immediate neighboring segments of segment i. We obtain an ordered sequence of 
line segments from a boundary and only two segments, i.e. segments of indices i-1 and i+1, are considered in the 
neighborhood system. Considering two direct neighboring segments, however, causes some problems in MRF labeling. 
If a necessary segment is not extracted or a noise segment is added to the neighborhood of a segment the segment cannot 
be correctly labeled. Figure 5 illustrates these problems. (a) shows a missing segment and (b) shows some extra noise 



 

 

segments. We solved this problem by considering two indices (segments) from previous and next of index i. That is four 
pairs, (i-1, i+1), (i-1, i+2), (i-2, i+1), and (i-2, i+2), are considered as Ni and when index i-2 or i+2 is included in the Ni 
the i-1 or i+1 segment, respectively, is assumed as noise or assumed not being extracted. With this extended 
neighborhood system we can use smaller threshold for noise removal and save many small necessary segments which 
were removed before (see case (a)). The neighborhood system, however, may increase noise segments which were 
removed with larger threshold (center pointer in (b)). But small noise segments do not cause labeling problem in the 
extended neighborhood system unless both neighboring segments, i.e. i-1 and i-2 or i+1 and i+2, are noise segments, 
which is a rare case. The labeling results of the two pointers in (b) were exactly the same and all noise segments in 
extended neighborhood were removed from the final configuration.  
 
We identified all pairs of possible neighboring labels of each label and used them in computing compatibility functions 
and messages in BF. Among all possible labels of a certain label l, some labels cannot appear at the same time in the 
labeling configuration and those pairs should be identified and considered in labeling algorithm. A set of label pairs of 
label l is denoted by Ll. Figure 6 shows all possible neighboring labels of label 103 and L103. Note that for example 102 
and 104 cannot appear in the neighborhood of a segment if the segment is labeled 103.   
 
 

  
(a) Example of missing segment 

 

  
(b) Example of noise segments 

 

(Left: input, center: w/o extended neighborhood, right: w/ extended neighborhood) 
 

Figure 5. Problem cases due to small segments 
 
 

Possible neighboring labels of 103 100, 102, 104, 105 
L103 (102, 105), (104, 105), (102, 100), (104, 100) 

 

Figure 6. An example of Ll 
 
 
Feature extraction and compatibility functions 

To handle the rotation problem we are using only angle features between line segments. Figure 7 shows the angle 
measures. The segment i and two neighboring segments in Ni form a part unit and two angle measurements (left and right 
angles) are obtained from each unit. The angles are measured in range of 0º~359º. We collected 2-tuple feature values (Li, 
Ri) from part units corresponding to each label from training samples and computed probability density function (pdf) of 
the angle feature of each label.  
 
The compatibility function ri(fi) in Eq. 1 is then computed by Eq. 2. 
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where pdf(.) is the probability density function of the angle feature given the label and d is the angle measure (Li, Ri).  
 
In Eq. 2, by considering pdf(.) of neighboring segments we can obtain more precise ri(fi). Some labels have similar angle 
features and can be identified from others only by the neighborhood. 
 
The binary compatibility function ri,j(fi, fj) is defined by the Eq. 3.  
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Figure 7. Angle measurement 
 

Post-processing 

Upon the termination of the belief propagation, the label with largest belief can be selected as label of each line segment. 
In our application, however, the simple way does not guarantee an optimal labeling configuration. Some local labels are 
reasonable for the corresponding boundary part but they may not be optimal labels of the part from the view point of 
global optimal solution. This incorrect labeling configuration can be assumed as a local optimal solution. To find the 
global optimal solution, a dynamic programming (DP) technique is applied to the labels corresponding to the top-n 
beliefs of all line segments. The best path, i.e. global optimal solution, can be obtained by a simple backtracking 
algorithm from the label generating the largest DP cost at the last segment.  
 
Hidden Markov model (HMM) classification 

A hidden Markov model (HMM)-based labeling configuration classifier is implemented to classify a pointer boundary 
into three classes viz., (straight) arrow (SA), curved arrow (CA), and arrowheads (AH). Two 7-state left-right models 
and one 3-state left-right model are created to solve the 3-class classification problem. Figure 8 shows our HMM models.   
 
To use HMM in our problem we search for the head segments such as labels 101 or 103 (both cannot appear together) in 
a configuration and use them as starting segments. Then every configuration can be reordered so that it starts from the 
same point, traces the configuration in the same direction, and ends at the same point. The reordered configuration is 
provided as a data sequence to the HMM classifier and a classification score of each class is obtained. The class id 
generating largest HMM score is selected as final pointer recognition result. Our HMM classifier provides classification 
scores less than 0 and larger score is better one.  
 

 

(a) HMM for SA and CA (b) HMM for AH 
 

Figure 8. Structures of HMMs 



 

 

   
3.3 Image Annotation, Feature Extraction, and Retrieval 

A unique feature of the pointer recognition method described above is its capability of identifying the region in the 
image pointed to by the overlay. This feature is not necessary, however, for other symbols such as the asterisk or single 
character overlays (‘A’, ‘B’, etc.) The ability to isolate the image region of interest is valuable in associating the 
biomedical concept extracted from text analysis of the caption and figure mention text as described in Section 2. UMLS 
concept ids are associated with a 200×200 image region of interest (ROI). The size of the ROI is arbitrarily selected so as 
to be meaningful as proof-of-concept for the pilot. It is desirable to detect the ROI as a single homogeneous region and 
efforts toward this goal are in progress, but beyond the scope of this article.  
 
Image features are computed on the whole image as well as the ROI for CBIR. The features used include MPEG7 color 
and texture descriptors, LIRE (Lucene Image Retrieval Engine) descriptors, Gabor filters, dominant colors, discrete 
wavelet transform, among other features. Image similarity metrics include standard measures such as L2 distance and 
also include visual concepts defined on image patches [17].  
 
As shown in Figure 1, the retrieval framework will process queries in two modalities: text and image. A text query can 
be matched against the figure caption, article title, abstract, and if available, the figure mention in the full text. This 
approach is similar to BioText Search Engine [18], and Yale ImageFinder [19]. The proposed framework will also use 
biomedical concepts for query expansion, a feature available as a part of NLM’s Essie search engine [20]. The results of 
the text search will be limited to images linked to articles. If the query was hybrid, i.e. included an image component, or 
was image only, the image features from the query image (or user marked ROI) will be compared with those resulting 
from the text search. In the case of an image only search, the features will be compared directly with the indexed image 
features.  
 
The pointer and overlay finding results is expected to improve the specificity in image retrieval. If a pointer has been 
detected in an image through the use of text clues indicating their presence or directly by the MRF pointer recognizer, 
the image region pointed to can provide greater specificity on the image content. We expect this to significantly improve 
retrieval quality.  
 

4. EXPERIMENTS 
 
4.1 Pointer recognition 

Data set 

In our pointer recognition test, we assumed that results from the pre-processing step are satisfactory and have few 
problems. To create a test image set satisfying the assumption we cropped some pointers from images sampled from the 
ImageCLEF08 data set used in our prior work. Figure 9 shows some sample pointer images. Each pointer image has at 
least one pointer and the overall image quality is good. By using the pointer images, some critical failure factors from the 
pre-processing step such as broken or double boundaries can be minimized resulting in a more meaningful evaluation of 
the recognition algorithm.  
 

    
Figure 9. Sample pointer images 

 
Table 1. Number of sample images used in training and testing 

 Straight arrow 
(SA) 

Curved arrow 
(CA) 

Arrowhead  
(AH) Total 

Training 114 74 57 245 

Test 569 253 38 860 



 

 

Table 1 shows the number of pointer images used for training and testing for each pointer class. Examples of a straight 
arrow (SA) and a curved arrow (CA) are shown as the first two images, respectively, in Figure 9. Training images were 
used to define the label set, computing the probability density functions, and for HMM training.  
 
Evaluation results 

We applied our proposed algorithm to the pointer images and examined the results mainly in three points; MRF labeling, 
HMM classification, and line segment approximation result. Total 2,313 pointer boundaries were extracted from 860 test 
images. 82.0% out of the total boundaries were correctly labeled and classified. Figure 10 shows some pointer images 
successfully recognized and ROI extracted. On the other hand, 18.0% had some errors in MRF labeling or HMM 
classification and were not recognized correctly. We categorized main failure cases and the causes into four types.  

  

 

 

 

Figure 10. Pointer recognition results and ROIs (rectangles) 
 
Type 1: MRF labeling error 
Type 1 errors are pure MRF labeling errors. In many Type 1 cases, BF results were good enough and correct labels 
were included in the top-n beliefs, but the DP algorithm could not find them. Figure 11 (a) shows an example of Type 
1 error. Incorrect labeling occurred in the circle.  
 

Type 2: Unknown part unit 
Type 2 errors occurred in pointers whose part units were not defined in the label set. Figure 11 (b) shows an example 
of Type 2 cases. The labels 202 and 106 in the circle may be the best choices for the line segments but their 
neighborhood is not similar with the true neighborhood of label 202 and 106. This caused the incorrect labeling in the 
local sites, and as a result, incorrect labeling configuration was obtained.  
 

Type 3: Line segment approximation error 
Boundary over- or under-segmentation occurred in the line segment approximation and it caused MRF labeling errors. 
Figure 11 (c) shows two over-segmented line segments which were supposed to be extracted as two single line 
segments. 
 

Type 4: HMM classification error 
MRF labeling error is one obvious cause of HMM classification error. But classification errors can occur with some 
pointers whose line segments and labeling configuration are perfect. Figure 11 (d) shows Type 4 error samples. The 
MRF labeling and HMM classifier are mainly responsible for the left and right error cases, respectively. The segments 
with NULL (0) labels in left pointer should be labeled correctly first. The right sample was trained as SA but classified 
as CA. The result, however, is considered reasonable.   

 
4.2 Biomedical image retrieval test 

Test setup 

Two topics from ImageCLEFmed were selected for this test: i) Topic 11: show me abdominal CT images showing liver 
blood vessels, and ii) Topic 21: Show me photographs of tumors. Text-based retrieval retrieved 1,000 and 191 images for 
the topic 11 and 21 text queries, respectively. Pointers and ROIs are extracted automatically from the retrieved images. 
Only one ROI with highest similarity score is used to decide the ranking if an image has multiple ROIs. Three sample 
ROIs for each topic are extracted from three images relevant to each topic, and they are compared with the ROIs 
extracted from the retrieved images (see Figure 1). Re-ranked results are compared with the text-based retrieval results to 
evaluate the performance of our proposed approach.  



 

 

   
(a) Type 1 (b) Type 2 (c) Type 3 

 
(d) Type 4 

 

Figure 11. Sample images of each type of failure 
 
 
Evaluation results 

Table 2 shows the evaluation results obtained by using TRECEVAL package [21]. Among the three query ROIs used in 
the retrieval test, only one showing the best performance is selected and shown in Table 2. Pointers and ROIs were 
extracted from 554 and 71 images out of the 1,000 and 191 images in topic 11 and 21, respectively. Other images, i.e. 
images without pointers, were ranked lower than the images that contain pointers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The preliminary retrieval test shows some promising results. The topic 21 retrieval result proves that text-based retrieval 
result could be improved by our proposed approach. In the text-based retrieval, only two relevant images were ranked 
within top-20 ranking. After re-ranking, six new images which were not in the top-20 of the text-based retrieval result 
were ranked within top-20, and the two images initially within top-20 were ranked at bottom where images without 
pointers were ranked.  
 
Results of topic 11, however, show a lower mean average precision (MAP) score with the proposed approach. Initially 
11 relevant images were ranked within top-20 in the text-based retrieval. After re-ranking only three new images were 
ranked within top-20, and the 11 images were ranked at lower than 20. We identified three main causes for relevant 
images being assigned a lower rank after re-ranking using our method: (i) images may not have any pointers; (ii) failures 
in pointer recognition; and (iii) inaccurate ROI extraction. Visual analysis revealed that of the poorly ranked relevant 
images: three images did not contain any pointers, one had a pointer that was not recognized, and seven had inaccurate 
ROI extraction. Figure 12 shows sample images where the ROI rectangles are inaccurate. Boundary of the desired ROI is 
marked by a dashed contour. The rectangle in Figure 12(a) is too large. It contains the entire true ROI but has too much 
unnecessary region included with it. In Figure 12(b) none of the ROI rectangles contain the entire true ROI but contain 
some part of them. From the results we conclude that improved ROI extraction techniques are needed for taking 
advantage of pointer localization and region-based multi-modal CBIR. 
 

Table 2. Retrieval results 

Topic Measurements Text-based retrieval Proposed retrieval 

11 

Number retrieved 1,000 1,000 
Number relevant  331 331 

Number relevant and retrieved 95 95 
MAP 0.0898 0.0379 

21 

Number retrieved 191 191 
Number relevant  334 334 

Number relevant and retrieved 25 25 
MAP 0.0094 0.0168 



 

 

 
(a) (b) 

Figure 12. Inaccurate ROI extraction 
 
 

5. CONCLUSION 
Detecting arrows, pointers, and other annotations such as text labels, can be very beneficial in locating image regions of 
interest within figures in biomedical articles. Such annotations can be identified through clues available via relevant text 
snippet analysis (captions, mentions) and image analysis methods. Text concepts as well as image features can now be 
used to tag image content. We expect this to improve image indexing quality and consequently the indexing and retrieval 
of biomedical articles. 
  
This article presents an MRF-based pointer recognition algorithm. 43 labels are defined from boundary parts frequently 
seen in commonly used pointer shapes overlaid on biomedical images. MRF theory is applied to label the line segments 
extracted from pointer boundaries. HMM-based classifier following the MRF labeling is applied to classify a labeling 
configuration into three pointer classes. Our test result shows that the proposed method can recognize almost all arrow 
type pointers and is less affected by the large variation in pointer shape. Ongoing research effort on the pointer 
recognition aims to: (i) improve MRF labeling algorithm; (ii) train the recognizer with unknown part units; and (iii) 
improve boundary extraction algorithm to extract robust pointer boundary. 
 
Biomedical image retrieval test and the results have been presented as well. We compared the proposed retrieval 
approach with conventional text-based retrieval results. The preliminary results partially prove that our hypothesis is 
correct and show effectiveness of the proposed retrieval approach. Future work includes: (i) improving ROI extraction; 
(ii) combining text analysis results with pointer recognition and ROI extraction algorithm; (iii) implementing some 
processes manually done in the retrieval test such as noise ROI removal; and (iv) more tests against mixed collections 
and other query topics.  
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