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For research and development of multimodal searching, our 
group has been participating in the ImageCLEF 2  medical 
retrieval track, ImageCLEFmed. ImageCLEFmed focuses on 
medical image annotation and retrieval and aims to provide 
support and resources for the evaluation of visual information 
retrieval systems. Some of our techniques evaluated in the 
benchmark have been integrated into the OpenI system. Since 
filtering search results by image modality is not only a 
desirable feature for end users, but also significantly improves 
retrieval performance, modality classification became one of 
the subtasks of ImageCLEFmed 2012 [3]. This modality 
classification task aimed to evaluate the state of the art in 
figure classification for a subset of the open access articles 
from NLM’s PubMed Central®3, which is a free archive of 
open access biomedical and life sciences journal literature at 
the National Library of Medicine. The images were to be 
categorized into one of thirty-one modalities as shown in 
Figure 1. Our ITI (Image and Text Integration) group 
investigated various approaches for modality classification, and 
the best of our submitted runs was ranked fifth of all the 
submissions [4]. Compared to the flat classification strategy 
that classifies all classes together, a hierarchical classification 
strategy which utilizes the hierarchical structure of class 
taxonomy achieved better performance. The class taxonomy 
used in ImageCLEF 2012 aims at completeness, that is, it tries 
to cover all of the classes of images that appear in the 
biomedical literature However, to the end users of biomedical 
retrieval systems, such as clinicians and patients, the 
importance of each class varies. For example, users are likely 
more interested in diagnostic images than illustration figures, 
and may want to limit their search to a certain imaging 
modality, such as CT or X-ray, rather than a certain type of 
illustration, such as flow charts or system diagrams. In OpenI, 
we implemented a filter which allows users to limit their search 
to eight image types: CT scan, graphics, MRI, nuclear 
medicine, PET, photographs, ultrasound, and X-ray, as shown 
in Figure 2. For any medical image class taxonomy, there is 
also a likely need/interest to add a new level: body segment 
classes. That is, to further classify the diagnostic image figures, 
into different body segments, such as head, abdomen, pelvis, or 
thorax; this is the goal of our current work. In the following, 
we report on our initial progress towards reaching this goal. 
We focus on CT modality, as CT scans are frequently used in 
hospitals to examine abnormalities in various body locations 
and are subsequently often shown in biomedical documents for 
illustration and discussion. 

The rest of the paper is organized as follows. We first 
present the proposed method in Section II. Then we describe 
experimental tests on a subset of data from ImageCLEFmed 
and discuss the results in Section III. Section IV draws the 
conclusions and provides directions for future work.   

II. METHOD 
Even for the same modality, the figures have very large 

variation with respect to image size, intensity illumination, 
window setting, viewing direction, anatomical position, 

                                                 
2 http://www.imageclef.org/ 
3 http://www.ncbi.nlm.nih.gov/pmc/ 

pathology abnormalities, organ entirety (amount of the organ 
visible), arrow annotation, etc. For our initial feasibility 
evaluation, we limit our efforts to axial view cross sections and 
the images containing one whole/near-whole object (object 
entirety). With respect to object entirety, Figure 3 and Figure 4 
give several examples of images that are included or not 
included in the study, respectively. The data used in this study 
are from ImageCLEF collections. Since the proposed method 
is a supervised classification method, a ground truth dataset 
needs to be created first. To label each figure (i.e., to identify 
which body segment the image belongs to) in the ground truth 
dataset, we were guided by the online LUMEN Cross-Section 
Tutorial4 which uses CT slices from the Visible Human Project 
[5]. The tutorial divides the body into six regions: head and 
neck, upper limb, thorax, abdomen, pelvis, and lower limb, but 
we considered only five of them: head and neck, thorax, 
abdomen, pelvis, and lower limb, because the cross sections of 
upper limb overlap with those of thorax. In addition, the lower 
limb region defined in our approach doesn’t contain the section 
overlapped with the pelvis region. The guideline for how to 
define body segment partition is given as follows: 1) the 
separation between the head and neck region and the thorax 
region is decided by the first presence of the clavicle in the 
cross section image; 2) the separation between the thorax 
region and the abdomen region is decided by the first 
disappearance of the inferior lobe in the cross section image; 3) 
the separation between the abdomen region and the pelvis 
region is decided by the first presence of the ilium in the cross 
section image; 4) the separation between the pelvis region and 
the lower limb region is decided by the first disappearance of 
the ischial tuberosity in the cross section image. We discuss the 
generation of ground truth data more in the results section. 
After creating the ground truth dataset, a number of features 
were calculated from the images. These features and 
corresponding labels were then used to train a supervised 
classifier. We will discuss these steps below. 

Fig. 3. Images containing a whole or near-whole cross section 

 

                                                 
4 http://www.meddean.luc.edu/lumen/meded/grossanatomy/x_sec/ 
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Fig. 4. Images containing a partial cross section 

 

A. Feature Extraction 
There are many different features proposed in the literature 

whose effectiveness is application dependent. For most cases, 
using one or a few feature types is inadequate. Therefore, to 
achieve satisfactory classification results, we first apply various 
types of descriptors that have been shown to be effective for 
other applications, i.e. we represent the image characteristics 
using a large number of features. Then, a feature selection 
procedure is used to remove irrelevant and redundant features. 
Fourteen types of feature descriptors are applied to represent 
the visual characteristics of figures. Each feature descriptor is 
described briefly below (several descriptors that are closely 
related are introduced together, such as CEDD feature 
descriptor and FCTH feature descriptor). For detailed 
techniques, please refer to the referenced literature. Please note 
that in this paper, we focus on visual features only. Combining 
visual features with text features, such as captions, is planned 
for future work.  

• Tamura descriptor: Tamura features [6] are texture 
features based on studies of human visual perception. 
They consist of six features corresponding to six 
visually meaningful texture properties: coarseness, 
contrast, directionality, line-likeness, regularity, and 
roughness. However, through experiments, the authors 
[6] found only three of the six features have strong 
correlation with human perception. They are:  
coarseness, contrast, and directionality, which are used 
in this paper.  

• CEDD and FCTH: CEDD (color and edge directivity 
descriptor) [7] and FCTH (fuzzy color and texture 
histogram) [8] are two descriptors used by the Lucene 
image retrieval (LIRE) library for image indexing and 
retrieval. Both features incorporate color and texture 
information in one histogram which is computed by 
combining three fuzzy units. The first and second fuzzy 
units, the parts for color information representation, are 
the same for CEDD and FCTH. CEDD and FCTH 
differ in the third fuzzy unit, which captures texture 
information. Both features are compact, and their sizes 
are limited to less than 72 bytes per image. 

• GLCM: GLCM (gray-level co-occurrence matrix) is a 
well-known texture analysis method. Five of the 14 
features proposed by Haralick [9] are used for our 
application: maximum probability, contrast, entropy, 
uniformity, and inverse difference moment.  

• Color moments: moments and the related invariants are 
widely used in image pattern analysis. Color moments 
[10] consist of the first, second, and third moments of 
each color channel. 

• CLD and EHD: CLD (color layout descriptor) and EHD 
(edge histogram descriptor) are MPEG-7 features [11]. 
CLD captures the spatial layout of the dominant colors 
on an image grid consisting of 8 by 8 blocks and is 
represented using DCT (discrete cosine transform) 
coefficients. EHD represents the local edge distribution 
in the image, i.e. the relative frequency of occurrence of 
five types of edges (vertical, horizontal, 45-degree 
diagonal, 135-degree diagonal, and non-directional) in 
the sub-images. 

• Bag of SIFT: SIFT (scale invariant feature transform) 
[12] features are local features that are relatively 
invariant to translation, scaling, orientation, and image 
noise. The SIFT algorithm consists of four major steps. 
First, it detects the maxima and minima in the scale 
space. Then, it identifies key points by removing those 
extrema with low contrast. Then, it assigns an 
orientation to each key point. Finally, it computes the 
local image gradient feature measured relative to the 
orientation of the key point, to provide invariance to 
rotation. For each key point, a vector of length 128 
features distinctively represents the neighborhood 
around it. The extracted SIFT features of key points are 
then clustered and the images are represented by a bag 
of these quantized features, similar to the method of 
“bag of words” in text retrieval. For details of the 
method, please refer to [13].  

• LBP: The LBP (local binary pattern) [14] operator is a 
texture descriptor that is robust against illumination 
changes. The texture information in the image is 
represented by a histogram of binary patterns. The 
binary patterns are generated by thresholding the 
relative intensity between the central pixel and its 
neighboring pixels. Because of its computational 
simplicity and efficiency, LBP and its extensions have 
been successfully used in various computer vision 
applications. Two versions of LBP based features [15] 
are extracted: one is calculated using the original LBP 
definition and the local contrast measure, the other is 
obtained with the joint distribution of LBP and local 
variance in a circularly symmetric neighborhood.  

• Local color histogram: the image is divided into blocks, 
and, for each block, a color histogram is computed. The 
feature is a cascade of the histograms of all the blocks.  

• Primitive length, edge frequency, and autocorrelation: 
primitive length [16], edge frequency [16], and 
autocorrelation [16] are well-known texture analysis 
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methods which use statistical rules to describe the 
spatial distribution and relation of gray values.  

• Image width to height ratio 

The length of each feature type is given in Table I. 

TABLE I.  LENGTH OF FEATURES 

Feature Length Feature Length 

CEDD  144 Edge frequency 25 

FCTH  192 Tamura descriptor 18 

CLD  16 Color moments 3 

EHD  80 Primitive length 5 

Bag of SIFT 256 width to height ratio 1 

LBP1 256 Local color histogram 1024 

LBP2 256 Autocorrelation 
coefficients 

25 

GLCM 20   

 Combined: 2321  

 

B. Feature Selection 
As stated in Section II.A, a large number of features are 

extracted and the overall feature length is over 2300. 
Therefore, we also applied a feature selection procedure to 
remove redundant and irrelevant feature variables, with the 
goal of reducing training/testing time and possibly improving 
classification performance. Generally, a feature selection 
algorithm contains four main stages: subset generation, subset 
evaluation, stopping criteria, and result validation. There are 
many feature selection methods proposed in the literature 
based on different search strategies and evaluation measures. 
For a good survey on feature selection methods, please refer to 
[17]. We employed the methods implemented in WEKA 5 , 
Java-based open source machine learning software. 
C. Classification 

Image classification methods can be generally categorized 
into two broad groups: supervised classifiers and unsupervised 
classifiers. In contrast to unsupervised classifiers, supervised 
classifiers require a stage of learning/training for the classifier 
parameters, but can generally achieve better performance. 
There are many kinds of supervised classifiers including 
support vector machines (SVM), decision trees, Bayesian 
networks, neural networks, and Boosting. Among these 
classifiers, SVMs are the leading methods, and achieve very 
good generalization performance on a wide range of 
applications. Basically, for linearly separable binary class 
patterns, SVM finds the optimal decision hyperplane, which 
has the largest distance to the nearest training samples in the 
different classes. For patterns that are not linearly separable, 
SVM maps the original data into a new high dimensional space 
using kernel functions and obtains the maximum margin 
separating decision surface in the new space. To extend the 
SVM algorithm to multi-class cases, several simple and 
effective combination methods can be used. We used the 

                                                 
5 http://www.cs.waikato.ac.nz/ml/weka/ 

method of one-against-one[18]. This method combines all 
pair-wise comparisons of binary SVM classifiers. The N-class 
case is divided into N(N-1)/2 two-class cases. A binary SVM 
classifier is trained for each pair of classes. When presented a 
test case, each binary SVM classifier gives one vote to the 
winning class. The class having the largest number of votes is 
then assigned as the label of the test case. The sequential 
minimal optimization (SMO) algorithm [19], is an algorithm 
widely used for SVM training because of its efficiency in 
solving the optimization problem arising from the derivation of 
the SVM. We use WEKA, which incorporates SMO, for our 
application.  

III. RESULTS AND DISCUSSION 
For supervised classification, manual annotation is required 

to generate the labeled dataset used to train and evaluate the 
classifier. To create the labeled dataset (ground truth), we use 
text searching on figure captions and article text referencing 
the figures to extract the candidate images for each class (body 
segment) from the ImageCLEF dataset and then manually filter 
out the wrong cases by visual examination. Specifically, the 
figures whose captions or text snippets in the article that 
discuss the figure contain the text query (“CT” and the name of 
body segment, for example, head/neck/brain for “head and 
neck” class, or thorax/chest/lung for “thorax” class) are 
retrieved as candidates. The visual examination is carried out 
under the guidelines described in Section II. The final number 
of images for each body segment is given in Table II (because 
the obtained number of images in the lower limb class is very 
limited, we discarded this class and consider four classes only: 
head and neck, thorax, abdomen, and pelvis). The total number 
of figures in the dataset is 2465. 

TABLE II.  NUMBER OF SAMPLES 

Body Segment Head & neck Thorax Abdomen Pelvis 

Number of images 412 1088 542 423 

 
To improve computation efficiency, we applied one 

attribute selection method provided in WEKA 
(AttributeSelectedClassifier in the meta-classifier in which the 
dataset is reduced by attribute selection before being passed to 
a classifier). Specifically, the feature evaluator is set to 
“CfsSubsetEval” which estimates the value of a subset of 
attributes by considering the individual predictive ability of 
each feature along with the degree of redundancy between the 
features; the search method is set to “BestFirst” which searches 
the space of feature subsets by greedy hill-climbing augmented 
with a backtracking facility. This procedure reduces the length 
of the feature vector to 50. These 50 attributes belong to the 
features of CEDD, CLD, EHD, FCTH, LCH, primitive length, 
bag of SIFT, Tamura descriptor, and image width to height 
ratio. Therefore 14 types of features are reduced to 9 types. For 
classification, the SMO method was applied and the default 
values in WEKA were used (polynomial kernel with exponent 
being 1). We evaluated the classification using ten-fold cross-
validation. Table III and Table IV show the evaluation results 
for the classification with and without the step of feature 
selection, respectively. The measures used for evaluation are: 
true positive (TP) rate, false positive (FP) rate, precision, 
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recall, F-score, and ROC area. Comparing Table III and Table 
IV, the one with feature selection has only a slight performance 
drop when using only 50 selected attributes instead of the 
original 2321. These results demonstrate the effectiveness of 
the proposed method (92.3% accuracy without feature 
selection and 91.8% accuracy with feature selection). The 
method can be easily extended to other modalities under the 
“Radiology” category shown in Figure 1, such as X-ray. 

TABLE III.  CLASSIFICATION RESULTS (WITHOUT FEATURE SELECTION)  

 TP 
rate 

FP 
rate 

Precision Recall F-
score 

ROC 
area 

Head&neck 0.934 0.003 0.982 0.934 0.958 0.988 
Thorax 0.952 0.037 0.953 0.952 0.953 0.967 

Abdomen 0.891 0.048 0.84 0.891 0.865 0.939 
Pelvis 0.875 0.02 0.9 0.875 0.887 0.965 

Average  0.923 0.031 0.924 0.923 0.923 0.964 

Accuracy 92.3% 

TABLE IV.  CLASSIFICATION RESULTS (WITH FEATURE SELECTION) 

 TP 
rate 

FP 
rate 

Precision Recall F-
score 

ROC 
area 

Head&neck 0.976 0.006 0.971 0.976 0.973 0.993 
Thorax 0.943 0.028 0.964 0.943 0.954 0.969 

Abdomen 0.876 0.056 0.815 0.876 0.844 0.925 
Pelvis 0.853 0.021 0.894 0.853 0.873 0.964 

Average  0.918 0.029 0.92 0.918 0.919 0.963 

 Accuracy 91.8% 

IV. CONCLUSION AND FUTURE WORK 
Figure searching is one vital component in an article 

retrieval system, since biomedical researchers regularly add 
figures into their publications to demonstrate clinical study and 
research results. Since classification of figure types can 
facilitate feature searching, it has become an important recent 
research topic. In this paper, we extend our previous work on 
figure type classification and propose a new method to 
automatically classify CT figures into four major categories of 
body segments: head and neck, thorax, abdomen and pelvis. 
Fourteen different types of image feature descriptors are 
employed for characterizing the visual properties of figures. 
We also performed feature selection to obtain a tractable set of 
features. We used a supervised multi-class classifier based on 
the SVM algorithm. The method was tested on a dataset of 
2465 figures, yielding an overall performance of over 90% 
accuracy. Future research directions include two main aspects. 
We will incorporate text features in addition to the image 
features used in our current study. We will also apply the 
method to other suitable modalities. 
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