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1 Introduction and Background 
Tuberculosis (TB) is an infectious disease caused by the bacillus M. Tuberculosis. According to the 
World Health Organization (WHO) Global Tuberculosis Report 2014 [1], TB remains one of the world’s 
deadliest communicable diseases. In 2013, an estimated 9.0 million people developed TB, of these 1.1 
million (13%) were HIV-positive. According to the report, 1.5 million died from the disease, 360 000 of 
whom were HIV-positive. The rates of TB mortality are slowly declining each year and it is estimated 
that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. 
However, TB is now present in all regions of the world, increasingly as drug resistant variants.  

Figure 1. WHO maps (c. 2013) showing (Top) global TB incidence rates; (Bottom) TB mortality among HIV positive cases. 

TB commonly affects the lung, but can also affect other organs such as bones and other soft tissues. It 
spreads through the air when people with active TB cough, sneeze, or otherwise expel infectious bacteria. 
According to the WHO, the largest impact of the increase in TB burden relates to inadequate control in 
developing nations, particularly those with high endemic rates of HIV infection where opportunistic 
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coinfections in immunocompromised HIV/AIDS patients have exacerbated the problem [2, 3]. TB is most 
prevalent in sub-Saharan Africa and Southeast Asia, where, in addition to HIV, widespread poverty and 
malnutrition reduce resistance to the disease. The African Region accounts for about four out of every 
five HIV-positive TB cases and TB deaths among people who were HIV positive [1].  

Several skin tests based on immune response are available for determining whether an individual has been 
exposed to TB. However, skin tests are not an indicator of active disease, and are also affected by 
vaccinations. A definitive test for diagnosing TB is the identification of the bacteria in a clinical sputum 
or pus sample, which is the current gold standard [1, 3]. However, it may take several months to identify 
this slow-growing organism in the laboratory. Another technique is sputum smear microscopy, in which 
bacteria in sputum samples are observed under a microscope. Recent advances in automated diagnostic 
tests are based on DNA analysis1. The test is fast and accurate, but is expensive making it unsuitable for 
population screening. As a result, taking postero-anterior (PA) chest X-rays (CXRs) continues to remain 
as an inexpensive and mandatory part of every evaluation for TB [4, 5]. 

In this report, we present a reliable automated CXR image-based screening system for detecting 
pulmonary diseases, with a special initial focus on TB [6, 7]. The system is being tested through our 
collaboration with AMPATH (Academic Model for Prevention and Treatment of HIV/AIDS) [7]. 
AMPATH is a partnership between Moi University School of Medicine and Moi Teaching and Referral 
Hospital, Eldoret, Kenya, and a consortium of U.S. medical schools under the leadership of Indiana 
University. AMPATH provides drug treatment and health education for HIV/AIDS control in Kenya. 
AMPATH currently treats nearly 200,000 patients for HIV. Large numbers of HIV patients need to be X-
rayed and screened for active TB to ensure proper treatment of their infection(s) and avoid drug 
incompatibilities. However, the shortage of radiological services in Kenya necessitates an automated and 
inexpensive screening system. The system should be automatic and provide adequate clinical decision 
support to regional medical officers with little radiology background. The target imaging source for our 
automated system are portable X-ray scanners mounted on trucks designed for radiological imaging to 
access population in rural areas with poor road access. At-risk individuals identified by our system would 
be referred for treatment to regional clinics, or the hospital in Eldoret. 

1.1 Radiographic impressions of TB 

Patients exposed to TB can be characterized clinically into two groups: (1) those with active TB disease; 
and, (2) those who have been exposed but do not have active disease. This latter group may harbor small 
colonies of active bacilli sheltered within their bodies, particularly in their lungs, and are thus at risk for 
activation of TB, if their physical health state is compromised. This happens, for example, when immune 
surveillance and control systems fail in populations with immunocompromised states such as HIV/AIDS. 

Major radiographic manifestations of active pulmonary TB [8] include the following, some of which are 
shown in Figure 2: 

• Air space consolidation: lobar opacity, often reported as pneumonia or pneumonitis;
• Miliary pattern: Fine granular sandy or seed-like appearance throughout the entirety of both lungs,
reported as diffuse bilateral infiltrates, sometimes (correctly) referred to as micronodular [9]; 

• Cavity formation: a finding with a detectible radio-dense rim, which may be continuous or
discontinuous, is differentiated from a mass as it has some central complete or relative radiolucency; 

• Bronchiectasis or enlargement of airways can appear as tubular rings or cylinders of irregular
diameter extending radially from the lung hila, with or without central radiolucency; 

1 http://www.who.int/mediacentre/news/releases/2010/tb_test_20101208/en/ 
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• Lymph node enlargement or adenopathy: smoothly marginated well-defined mass in close anatomic 
proximity to the mediastinum. These are silhouetted against the margins of normal structures such as 
the predictable pulmonary arteries and veins, which may facilitate their detection. Also a specific 
feature of an enlarged lymph node is frequently seen in patients with TB [10]; 

• Thickened Pleura: a finding that can be easily detected through careful survey of the periphery of the 
lungs just adjacent to ribs superiorly and laterally, and along the diaphragm inferiorly; 

• Pleural effusions: loss of visualization (indistinctness) of the lateral costophrenic and medial 
cardiophrenic sulci on PA radiographs. 

 

 
Figure 2. Example CXRs with manifestations of TB. CXR A and C in have infiltrates in both lungs. CXR B is a good example 

of pleural TB, which is indicated by the abnormal shape of the costophrenic angle of the right lung. 

In addition to these findings of active disease, classic features of TB exposure include calcified 
granulomata and apical pleural thickening. Many of these characteristic findings occur in TB, but also 
occur in many other pulmonary diseases such as pneumonia.  

1.2 Radiographic screening 

According to the “WHO Lime book” [2], CXRs can serve both as a screening and measurement tool to 
identify everything that is or could be related to a patient having pulmonary diseases including 
manifestations of TB. In a mobile screening program all participants who either have CXRs “suspicious 
for TB” or whose CXRs are “minimally abnormal” should be “intentionally over-read” by the interpreter 
[2]. An embedded computerized program would allow this to occur during the primary encounter, 
limiting the resources required to identify the patient whose CXR has been screened and interpreted as 
normal. The potential for immediate, on-the-spot interpretation of “normal”, which is entirely negative for 
TB or any pulmonary disease possibly related to TB; or “abnormal”, which is positive for TB or any other 
disease that could, even in the rarest of circumstances, have a statistical association with TB, is of 
potential value in the mobile screening program. TB screening in high prevalence HIV/AIDS regions 
demands intentional over-reading. The relative frequency of typical TB-associated imaging features is 
different in patients with HIV. In such screening programs, each patient has a reasonably high likelihood 
of having disease, or pre-test probability of having disease. Pre-test probability is considered as an input 
variable by human readers, and may bias their interpretation of images toward “intentionally over-
reading”. In the screening context, a low false negative rate is desirable and a modestly high false positive 
rate is tolerated.  

1.3 Related Work 

Despite its near omnipresence in medical practice, digital chest radiography and computer aided screening 
and diagnosis is still a challenge. In a recent survey, van Ginneken et al state that 45 years after the initial 
work on computer-aided diagnosis in chest radiology, there are still no systems that can accurately read 
chest radiographs [11-13]. Automated nodule detection is becoming one of the more mature applications 
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of decision support/automation for CXR and CT [14-16]. The result is that computer-aided diagnosis 
(CAD) systems can successfully assist radiologists in diagnosing lung cancer [17].  
 
The segmentation of the lung field is an essential task that any CAD system needs to support for a proper 
evaluation of CXRs. Other segmentations that may be helpful include the segmentation of the ribs, heart, 
and clavicles [18, 19]. For example, van Ginneken et al compared various techniques for lung 
segmentation, including active shapes, rule-based methods, pixel classification, and various combinations 
thereof [19, 20]. Their conclusion was that pixel level classification provided very good performance on 
their test data. Dawoud presented an iterative segmentation approach that combines intensity information 
with shape priors trained on the publicly available JSRT database (see Section 3) [21]. Depending on the 
lung segmentation, different feature types and ways to aggregate them have been reported in the literature 
[18, 19].  
 
Many of the CAD papers dealing with abnormalities in chest radiographs do so without focusing on any 
specific disease. Only a few CAD systems specializing in TB detection have been reported, such as [22–
25]. Further, TB screening is not just limited to normal/abnormal classification, but also to spot the 
location in CXRs where the abnormality lies [20]. For example, van Ginneken et al subdivide the lung 
into overlapping regions of various sizes and extract features from each region [22]. Hogeweg et al 
combined a texture-based abnormality detection system with a clavicle detection stage to suppress false 
positive responses [23]. A cavity in the upper lung zones is a strong indicator that TB has developed into 
a highly infectious state [24]. Shen et al developed a hybrid knowledge-based Bayesian approach to detect 
cavities in these regions automatically [24]. Xu et al approached the same problem with a model-based 
template matching technique, with image enhancement based on the Hessian matrix [25]. In [26], 
Hogeweg et al use a combination of pixel classifiers and active shape models for clavicle segmentation. 
Note that the clavicle region is a notoriously difficult region for TB detection because the clavicles can 
obscure manifestations of TB in the apex of the lung. Freedman et al showed in a recent study that an 
automatic suppression of ribs and clavicles in CXRs could significantly increase a radiologist’s 
performance for nodule detection [27]. Arzhaeva et al use dissimilarity-based classification to cope with 
CXRs for which the abnormality is known but the precise location of the disease is unknown [28]. They 
report classification rates comparable to rates achieved with region classification on CXRs with known 
disease locations. More information on existing TB screening systems can be found in our recent survey 
[29].  

2 Project Objectives 
This project exploits the convergence of imaging research and system development at the NLM and NIH 
policy objectives in global health. The following are project objectives: 
 

1. Advance the state-of-the-art in automated CXR image analysis. Automatically detect presence of 
pulmonary diseases including TB and other relevant disease in digital CXRs, leading to suitable 
discrimination for screening, as well as compute a measure of confidence in its determination.  

2. Develop deployable screening software such that it can aid field clinical officers in decision making 
at the point of care, and for radiologists to organize their workload. 

3. Recognizing the severity of HIV/TB co-infections and the shortage of radiological services in 
western Kenya, deploy developed software on to a self-powered mobile X-ray truck that AMPATH 
uses in rural areas. Their staff take chest x-rays of the population and employ the NLM-developed 
software to screen for the presence of TB and other diseases.  
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3 Project Significance 
The project makes a significant impact in the following ways: 
 

• Advancing the NIH Director’s global health initiative by making a significant impact in the 
development and application of low cost disease detection technologies in resource-challenged 
regions. 

• Developing screening technology for TB, a major global health challenge identified by the WHO as 
the second leading cause of mortality from infectious disease. HIV and TB coinfections result in 
treatment complications and spread of the disease. 

• Advancing the science in image analysis for automatically detecting pulmonary diseases from digital 
CXR images. 

4 Datasets 
Algorithmic development requires large image datasets for training and testing. We reached out to several 
sources – and the sets acquired are described below. The datasets were de-identified by the data providers 
and were exempted from IRB review at their institutions. The NIH Office of Human Research Protections 
Programs reviewed the collection of image data (review No. 5357).   
 
JSRT set: Set compiled by the Japanese Society of Radiological Technology (JSRT) [30]. The set 
contains 247 CXRs, among which 154 have lung nodules (100 malignant cases, 54 benign cases), and 
93 have no nodules. All images have a size of 2048 pixels x 2048 pixels with a 12-bit gray-scale 
depth. The pixel spacing in vertical and horizontal directions is 0.175mm. The JSRT set is publicly 
available and has gold standard lung masks [31] for performance evaluation.  
 
Montgomery set: Set from the Department of Health and Human Services, Montgomery County, 
Maryland, USA. The set contains CXRs collected under Montgomery County`s Tuberculosis control 
program. The dataset consists of 138 images, 80 of which are normal, and 58 images are abnormal with 
manifestations of tuberculosis. The CXR images are captured with a Eureka stationary X-ray machine in 
12-bit gray-scale.  The images in the dataset have a resolution of 4020 pixels x 4892 pixels. The pixel 
spacing in vertical and horizontal directions is 0.0875mm.  
 
Shenzhen set: The Shenzhen dataset was collected in collaboration with Shenzhen No.3 People`s 
Hospital, Guangdong Medical College, Shenzhen, China. The CXR images are from outpatient clinics, 
and were acquired as part of the daily hospital routine, using a Philips DR digital diagnostic system. The 
set contains 662 images, of which 326 are normal cases and 336 are cases with manifestations of TB. This 
set includes some pediatric images. As a result, the image sizes in the dataset vary: image width: 
minimum is 1130 pixels and maximum is 3001 pixels; for the image height, the minimum is 948 pixels 
and the maximum is 3001 pixels. 
 
Indiana set: The Indiana Set comprises 3,996 de-identified narrative radiology reports and associated 
CXR images in posterior –anterior (PA) and lateral exposures. The images were acquired from two large 
hospital systems within the Indiana Network for Patient Care database. The chest x-ray reports that were 
pulled mention tuberculosis evaluation ordered from any setting, and then a random subset of all 
outpatient chest x-ray reports were selected to achieve the target dataset. There is only one study per 
patient.  The set has images at various sizes that range from a minimum dimension of 1024 pixels and a 
maximum dimension of 4248 pixels.  
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India set: Contains 397 chest X-rays from a private clinic in India. These have a 12-bit gray-scale depth. 
The images have following different resolutions: 2446 pixels x 2010 pixels, 1772 pixels x 1430 pixels and 
2010 pixels x 1572 pixels. The pixel spacing in vertical and horizontal directions is 0.175mm. It contains 
more challenging X-ray images due to rotated torsi scans, stronger edges within the rib-cage, denser 
shade effects at apices, wide variations of lung sizes, and large lung deformations.  
 
We have made the Montgomery set and Shenzhen Chest X-ray datasets and associated data publicly 
available2 for research purposes [32].  

5 Methods and Procedures 
The system architecture is designed as a set of cascaded modules, with the flexibility to implement 
alternate image analysis pathways followed by late stage decision fusion. As currently developed, every 
image is analyzed for automatic lung region localization. Image features are extracted from within the 
localized lung boundary, leading to 2-class normal/abnormal decision for the input CXR image. We are 
also studying alternate techniques for detecting abnormalities in the CXR without localizing the exact 
lung boundary. The method also uses edge detection to find spurious contours that could be indicative of 
disease. Initial results suggest that the method is fast and quite powerful in detecting certain kinds of 
pathologies. 

5.1 Lung Region Localization 

A key first step in a computer-aided CXR screening system is the automatic detection of the lung regions. 
We have developed a novel automated lung boundary detection algorithm for CXR images [6]. It 
consists of three stages. An overview of the method is shown in Figure 3 below. 
 

 
Figure 3. An overview of our lung segmentation algorithm: (Stage-I) finding the similar lung CXRs from an atlas; (Stage-II) 
warping selected images to patient CXR; and, (Stage-III) lung boundary detection using a graph-cuts optimization approach. 

                                                        
2 http://ceb.nlm.nih.gov/repos/chestImages.php 
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Stage 1: First we use a content-based image retrieval (CBIR) method to identify a small set of similar 
appearing CXR images from an expert-annotated set, that we shall call the “atlas set” hereafter.  
Horizontal and vertical projection profiles [33] are computed for all CXR images in the atlas set. Then, 
we measure the similarity of each projection profile between the atlas set and the patient chest X-ray 
using the average Bhattacharyya coefficient [34]. 
 
Stage 2: In order to create the lung model, we register the selected set of CXR images that have 
similar appearance but may have different lung outlines. The transformation mapping is done using the 
SIFT-flow algorithm [35]. The algorithm first models the local gradient information of the observed 
image using scale invariant feature transforms (SIFT) [36]. Next, a minimization algorithm calculates the 
SIFT-flow, the transformation mapping between each selected atlas image and the patient image. The 
mapping is used to register and warp the selected atlas CXRs, making them geometrically aligned to the 
patient image. The lung model for the patient X-ray is then composed as the mean of the warped lung 
masks from the registered atlas images.  The model 
is a probabilistic shape prior in which each pixel 
value is the probability of the pixel being part of 
the lung field in the patient image. 
 
Stage 3: As a refining stage, we perform image 
segmentation using the graph cut algorithm [37] 
and model the segmentation process with an 
objective function. The max-flow/min-cut 
algorithm [38] minimizes the objective function to 
find a global minimum that corresponds to 
foreground (within-lung) and background (outside-
lung) labeling of the pixels.  
 
Evaluation: A radiologist manually generated 
“gold standard” segmentations for the atlas chest 
X-ray images. The process was aided using an interactive boundary marking tool [39], developed in prior 
NLM research and reported to the Board. The radiologist then corrected these outlines using FireFly [40], 
a web-based labeling tool developed at the University of Missouri. The method was evaluated on three 
datasets (JSRT, Montgomery, and India) described, previously, in Section 3 above. We also compared the 
system performance with the systems in the literature. The Jaccard Index3 (which measures overlap 
agreement) resulted in average accuracy of 95.4% on the public JSRT database, which bests all prior 
published results. A similar degree of accuracy of 94.1% and 91.7% on Montgomery and India datasets, 
respectively, demonstrates its robustness to image variety.  

5.2 Image Features  

To describe normal and abnormal patterns in the segmented lung field, we experimented with three 
different feature sets identified in the research literature for object detection and image retrieval; based on 
the research experience of the team, we expected these features to be meaningful for detecting pulmonary 
anomalies. 
 
1) Object Detection Inspired Features—Set A: This is a versatile feature set that is a combination of 
shape, edge, and texture descriptors [7]. For each descriptor, a histogram is computed within the localized 
lung field. The CXR feature vector is concatenated across all computed feature histograms. In particular, 

                                                        
3 Jaccard Index (Wikipedia): http://en.wikipedia.org/wiki/Jaccard_index  

Figure 4. Sample segmentation results on Montgomery dataset. 
Green and red contours indicate the gold standard and 

automatic segmentation results, respectively. 
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we use the following shape and texture descriptors in Set A [41, 42]: Intensity Histograms (IH), Gradient 
Magnitude histograms (GM), Shape Descriptor histogram (SD), Curvature Descriptor histograms (CD), 
Histogram of Oriented Gradients (HOG) [43], and the Local Binary Patterns (LBP) texture descriptor [44, 
46]. A modified multiscale approach by Frangi et al [46, 47] is used to compute the eigenvalues of the 
Hessian matrix needed for the shape and curvature descriptors. The Hessian describes the second-order 
surface curvature properties of the local image intensity surface. Normalization with respect to intensity 
makes these descriptors independent of image brightness. We empirically determined that using 32 bins 
for each histogram provides good results.  
 
2) CBIR-Based Image Features—Set B: This feature set contains low-level features motivated by content-
based image retrieval (CBIR) research at NLM [48]. The feature vector has 594 dimensions and includes 
intensity, edge, texture, and shape moment features. The set of features include the following features 
from the Lucene image retrieval library4 (LIRE) [49]:  three features – contrast, directionality, and 
coarseness – (out of six) from the Tamura texture descriptor [50] that have the strongest correlation with 
human perception; CEDD (color and edge direction descriptor) [51], FCTH (fuzzy color and texture 
histogram) [52], Hu invariant moments5 [53], MPEG-7 features [54] – CLD (color layout descriptor) and 
EHD (edge histogram descriptor), Gabor texture feature [55], and texture features, specifically, primitive 
length, edge frequency, and autocorrelation [56]. 
 
3) Shape Features—Set C: In this set, a collection of shape features provided by the standard MATLAB6 
implementation (regionprops) is used to describe properties of a lung region. Of these, we use: size, 
orientation, eccentricity, extent, centroid, and bounding box.  

5.3 Performance Evaluation 

A Receiver Operating Characteristic (ROC) curve plots the true positive rate versus the false positive rate. 
We used area under the ROC curve (AUC) and Accuracy (ACC) to measure performance of our 
classifier. A larger AUC value generally means a larger sensitivity and/or specificity for the same 
operating point [57]. The ROC curves show different possible operating points depending on the 
confidence threshold set for the classifier. The Y-axis indicates the sensitivity (or recall) of a system, and 
the X-axis indicates the corresponding false positive rate, which is (1 – specificity). ACC is computed as 
𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁)/𝑇𝑜𝑡𝑎𝑙, where TP is the number of true positives and TN is the number of true 
negatives, and Total is the number of images.  
 
We trained a support vector machine (SVM) [58, 59] classifier model on feature vectors computed for the 
Montgomery and Shenzhen data to discriminate between normal and abnormal CXR images. A unique 
characteristic of an SVM is that it classifies by computing the hyperplane with the largest margin between 
two classes; i.e., the hyperplane with the largest distance to the nearest training data point of any class. 
Ideally, the feature vectors of abnormal CXRs will have a positive distance to the separating hyperplane, 
and feature vectors of normal CXRs will have a negative distance. . (The sign of the distance corresponds 
to the “side” of the hyperplane that the feature vector lies in, in hyperspace.) The larger the distance the 
more confident we are of the class label. In our model we use this confidence measure to provide 
feedback to the operator. This enables confidence-based thresholding to find the optimal operating point 
of the classifier and the computation of the ROC curve. The optimal operating point of the classifier is the 
point on the ROC curve that provides the best ratio of sensitivity and specificity, given a cost function 

                                                        
4 LIRE: https://code.google.com/p/lire/  
5 DISCOVIR (for Hu moments): http://appsrv.cse.cuhk.edu.hk/ ~miplab/discovir/  
6 MATLAB: http://www.mathworks.com  
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that describes the operational costs of missing an abnormal case in the field. Mathematically, this point is 
given by the following expression: 
 

𝑆 = (|𝑁𝑜𝑟𝑚𝑎𝑙| ∙ 𝐶(𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙  |  𝑁𝑜𝑟𝑚𝑎𝑙))  /  (|𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙| ∙ 𝐶(𝑁𝑜𝑟𝑚𝑎𝑙  |  𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙)) 
 
Here |𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙| is the number of abnormal (TB positive) cases in the training set, |𝑁𝑜𝑟𝑚𝑎𝑙| is the 
number of normal (TB negative) cases in the training set, 𝐶 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙     𝑁𝑜𝑟𝑚𝑎𝑙) is the false positive 
cost, and, conversely, 𝐶 𝑁𝑜𝑟𝑚𝑎𝑙     𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙) is the false negative cost. The parameter S defines the 
slope of a line starting in the upper left corner of the ROC curve. When the false negative cost is much 
higher than the false positive cost, which is typically the case when screening large populations for TB, 
then 𝑆 will be small. Consequently, the optimal operating point will reflect a higher sensitivity at the 
expense of specificity. 
 

 
Figure 5. ROC curves for Montgomery dataset (Left) and Shenzhen dataset (Right) using SVM classifier on feature sets A and 

B 

In [7] we reported results on using all features (Set A, B) using an SVM classifier for both the 
Montgomery and the Shenzhen datasets. The best performance was achieved for the Shenzhen set with 
Linear Logistic Regression, with an AUC of 0.9 and an accuracy (ACC) of 84.1%. The paper also 
reported the performance of an SVM with a linear kernel. It was slightly lower at an AUC of 0.885 and 
ACC of 82.1%. Figure 5 shows ROC curves computed for the datasets, using a linear SVM as classifier 
that has been trained and tested with features in Set A using a leave-one-out evaluation scheme. For the 
Montgomery dataset, the ROC curve, which is shown on the left-hand side of Figure 5, has an AUC of 
0.86. For the Shenzhen dataset, the classifier performs a little better, as indicated by the slightly higher 
AUC value of 0.88 for the ROC shown on the right-hand side of the figure.  
 
Next, we wanted to identify features that contribute the most to the classification result, and if an alternate 
classifier would be able to model the data better. A neural network classifier [60] was implemented due to 
the high dimensionality of the feature vector and relative ease of parallelization. The network also 
generates complex hyperplanes to separate samples from different classes by adjusting its internal 
parameters (weights) by minimizing the classification error at each node for different input training 
samples. All the features were extracted from the segmented lung region only. Several different 
experiments were conducted using both datasets. However, we report results for only the Shenzhen set 
because of its size and balance. 
 
First we compute the effect of each feature set on the results.  
Table 1 shows results using individual feature sets A, B, C, and the combined set, respectively, validating 
the superiority of the features in Set A. 

Table 1. Accuracy an AUC measures using different features for the Shenzhen dataset. 
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Set A (%) Set B (%) Set C (%) Combined Set A,B,C (%) 
ACC% AUC ACC% AUC ACC% AUC ACC% AUC 
95.57 0.99 81.06 0.90 70.40 0.77 92.00 0.97 
 
Next, an experiment was designed to find the most effective combination of 18 individual features from 
the combined set. We performed an exhaustive feature space search by grouping different features in all 
possible combinations. The combination study resulted in 2n-1 different possible feature groups for each 
test with n features. A parallel implementation of the evaluation was implemented using GPUs (graphical 
processing unit) for accelerated computation. The results in Table 2 show the best feature combinations. 
In the table the bolded features indicate those that are common for achieving a maximum AUC and ACC 
score. Recall that the accuracy is a point on the ROC curve, and even if we have the maximum AUC, we 
may not have the maximum ACC on that curve! 
 

Table 2: Optimization results for the Shenzhen dataset.  

Optimization criteria Score Score Features 
Max (ACC) % 83.73 97.03 Gabor, HOG, LBP, Auto Correlation 
Max (AUC) 0.91 0.99 Gabor, HOG, LBP, FCTH, GM, CD 
 
In  
Table 1, the best scores for the Shenzhen were ACC of 
95.57%  and AUC of 0.99. After optimization the ACC 
increased to 97.03%, while the AUC of remained 
unchanged. The results demonstrate the importance of the 
feature selection and combination. 
 

Table 3: False positive rates for decreasing recall values. 

Dataset Sensitivity 
0.99 0.95 0.90 

Montgomery  0.276 0.276 0.265 
Shenzhen 0.0668 0.0230 0.0056 
 
 

   

 
Table 3 reports false positive rate results at recall 
(sensitivity) of 0.90, 0.95 and 0.99. Note that for the 
Shenzhen data, the sensitivity is continues to remain very 
high even when more false positives are forcibly introduced. This result provides further support for 
feature selection. As shown in Figure 6, the ROC curve using the Neural Network classifier improves to 
near perfection (AUC=0.993, ACC=97.05%) showing a large improvement over SVM classifier with 
linear kernel (AUC=0.885, ACC=82.1%). 
 
Note on current definition of “Abnormals”: This performance evaluation is discussed as a 2-class 
classification between abnormals and normals. However, the abnormal datasets used in this are 
exclusively those positively identified as having active TB. Broadening the abnormal class to include 
other pulmonary or chest-cavity abnormalities, such as cardiomegaly, atelectasis, nodules, and others, 
remains a goal and is described in our next steps (Section 7). 
 
Impact of Image Size on System Performance: To examine the scale invariance of the features, we also 
tested the performance of the SVM classifier using the Shenzhen dataset with different image scales. The 

Figure 6. ROC curve showing performance of 
the Neural Network classifier on Shenzhen 

dataset 
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results indicate the features are not scale invariant, but are robust within a small range of image sizes near 
those used for training. It is better to use the model that was trained by the images that have similar scales 
as the images the tool is going to be applied on. Further, lower image sizes often results in elimination of 
image subtleties indicative of certain pulmonary diseases. 

5.3.1 Comparing the Computer and the Screening Radiologist’s Performance 
To compare the performance of the system with the performance of radiologists, we asked two 
experienced radiologists to provide a second and third reading for the Montgomery CXRs. Both 
radiologists were working at a U.S. hospital at the time of our study. We asked them to follow the 
recommendations outlined in the WHO Lime book for diagnosing TB in endemic regions of the world 
[1]. In particular, we asked them to perform intentional overreading to ensure a high sensitivity so that 
missing a positive TB case becomes less likely. We adapted the Firefly labeling tool from the University 
of Missouri [40] to aid the radiologists in annotating the CXRs. Table 4 shows the agreement of both 
radiologists on the data, where R1 denotes the readings of the first radiologist and R2 denotes the 
readings of the second radiologist. A plus sign indicates CXRs that either the first or the second 
radiologist classified as TB positive, while a minus sign indicates CXRs that are, similarly, classified as 
normal. Both radiologists agree in 84.8% of the cases (95% CI:[77.7,90.3], using exact one-sample test of 
proportion). The kappa value is 𝜅 = 0.69 (95% CI:[0.52,0.86]), which signifies moderate agreement. 
After performing their individual readings, the two radiologists convened and came to a consensus 
decision for each CXR for which they have disagreed. For remaining cases, they agreed that their findings 
were consistent with TB.  

 
 
Table 5 shows a comparison of their consensus decision with ground-truth labels from Montgomery 
County’s local TB clinic that are based on clinical data as well as patient data to which the radiologists 
had no access. Here the terms R+ and R- denote the X-rays that are TB positive or negative, respectively, 
according to the consensus decision of the radiologists. The rows, GT+ and GT-, represent the X-rays that 
are TB positive or negative as confirmed by clinical data or other patient information. The number of 
false negatives is zero in Table 5, which is the result of overreading. The radiologists therefore succeeded 
in detecting all TB positive cases, achieving a sensitivity (recall) of 100% (95% CI:[93.8,100]). The 
specificity is 68.8% (95% CI:[57.4,78.7]), which shows that overreading also results in a considerable 
number of false positives, namely 25 X-rays. Both radiologists agree in 81.9% of the cases with the 
ground-truth data (95% CI:[74.4,87.9]), which is a relatively low recognition rate due to overreading and 
trying not to miss any potential positive TB case. 

 

Table 4. Radiologist agreement on Montgomery CXRs 

 
 R2 + R2 -  

R1 + 69 15 84 
         R1 - 6 48 54 
 75 63 138 

 

Table 5. Comparison of radiologist consensus performance 
with ground truth for Montgomery CXRs 

 R + R -  
GT + 58 0 58 

        GT - 25 55 80 
 83 55 138 

 

Table 6. Comparison of machine performance with ground 
truth for Montgomery CXRs 

 M + M -  
GT + 43 15 58 

        GT - 15 65 80 
 58 80 138 

 

Table 7. Performance comparison between machine and 
radiologist consensus decisions for Montgomery CXRs 

 R-correct R-wrong  
M-correct 89 19 108 
M-wrong 24 6 30 
 113 25 138 
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Table 6 compares the agreement of machine classification with the ground-truth data. The columns M+ 
and M- represent the X-rays that are identified by the machine as TB positive or negative, respectively. 
For the machine output, the agreement with the ground-truth data is slightly lower compared to the 
radiologist consensus decisions shown in Table 5. The machine agrees with the ground-truth data in 
78.3% of the cases (95% CI:[70.4,84.8]). It achieves a sensitivity of 74.1% (95% CI:[61.0,84.7]) and a 
specificity of 81.3% (95% CI:[71.0,89.1]), with the same number of false positives and false negatives, as 
shown in Table 6. This is because we have not optimized the sensitivity of the classifier used in Table 6. 
If we do so, the classifier’s ROC curve for the Montgomery X-rays (Figure 1) indicates that in order for 
the sensitivity to be close to 100%, the classifier will produce a false positive rate slightly higher than 
60%. This is about twice the false positive rate for the radiologists’ consensus decision in Table 5, which 
is about 31%. 
 
Finally, Table 7 compares the correct and incorrect consensus decisions of the two radiologists with the 
classification decision of the machine. The rows M-correct and M-wrong denote the correct and incorrect 
machine classifications, and the columns R-correct and R-wrong denote the correct and incorrect 
consensus decisions of the radiologists. In terms of classification performance, the radiologists are not 
significantly better than the machine (McNemar test, 𝑝 = 0.54). The number of X-rays for which both the 
machine classification and the consensus decision of the radiologists are wrong is remarkably low. In fact, 
if an X-ray is considered correctly classified when either the machine or the radiologist consensus is 
correct, then this combined human-machine performance has an error rate of 4.3%. This is significantly 
lower than the machine-only error rate of 21.7% and the human consensus error rate of 18.1%. Therefore, 
using the system for making computer-aided diagnostic decisions is a promising approach. The system 
could provide a verifying second opinion of radiologist readings, which can help improve the 
performance of radiologists because it is unlikely that both the radiologist and the machine classify the 
same X-ray incorrectly. 

5.4 Quality Control 

This section describes our efforts to ensure that the images have minimal acquisition errors, and that our 
system implementation is robust. 

5.4.1 A Novel Method for Image Rotation Correction  
To acquire an upright CXR, a radiographer needs to align the patient so that the imaged region is 
orthogonal to the central axis of the x-ray beam cone. Deviation from this procedure often results in a 
rotated CXR. This is likely to occur in images acquired using portable machines in non-hospital settings 
or under more challenging outdoor conditions due to hardware limitations of the screening setup [29, 61]. 
Typically, rotation is estimated by analyzing the relationship of the medial heads of the clavicles to 
adjacent appearing vertebral spinous processes in the upper thorax region [7, 62-64]. However, this 
requires the accurate automatic detection of these anatomical regions; since a small spatial error in the 
location of these regions can adversely affect the computation of the amount of rotation in the image. 
State-of-the-art automatic methods use generalized line histogram techniques to compute a principal rib-
orientation measure. While this may be adequate for human reading, the same may not hold for 
computerized reading of CXRs. In our method [65], we compute principal rib- orientation using a set of 
filter parameters (kernels) that attempt to account for all possible orientations [0, 2π). As shown in Figure 
7, we convolve the edge image of the lung in the CXR with filters that use these kernels. We then 
transform the resulting sets of lines into a 1D histogram, where the maximum magnitude is the principal 
rib-orientation.  
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For greater robustness, we apply the method to each lung separately. The CXR is considered upright if the 
difference in orientation angle for each lung is zero or within acceptable tolerance of zero. Our method is 
also robust to missing ribs. The method was tested on the Montgomery and Indiana datasets and resulted 
in a maximum accuracy of 90% with a tight 2° tolerance.  

5.4.2 Lung Segmentation and Classification 

 
Our lung segmentation algorithm uses an atlas-based approach to dynamically fit similar appearing 
annotated model CXRs to the patient CXR by iteratively registering air cavity spaces. Therefore, the 
resulting binary mask has a very strong preference to outline the air cavity space (“dark region”). Figure 8 
(left) shows this effect on a CXR diagnosed with pleural effusion: the green line outlines the output of the 
segmentation algorithm and the red line outlines the actual anatomy of the lung field. We pose the 
question: does this limitation have an adverse effect on classification because features are extracted only 
within the air cavity space whereas an abnormality, such as consolidation, may lie outside the segmented 
regions? Further, it is difficult to determine a priori when the segmentation algorithm parameters could be 
relaxed to include lower lobe opacities, by how much, and if the modified segmentation result would be 
adequate. To determine the need for parameter modification, we selected 48 abnormal CXRs with and 
without lung opacities from the Shenzhen dataset. Two experienced radiologists manually annotated the 
lung outlines. The outlines were overlapped to compute inter-observer agreement (Figure 8, right). The 
results revealed that while the radiologists had excellent inter-observer agreement on normal lung fields 
((µ, σ) = (86%, 13.6)), they scored much lower agreement on abnormal lung fields ((µ,σ) = (73%, 18.1)). 
To measure the impact on overall classification, we modified the segmentation algorithm parameters such 

Figure 7. Segmented lung region in CXR and final edge map 
image with superimposed results from kernel line filters applied 

Figure 8. (Left) Consolidation in right lung results in smaller lung 
boundary (blue line) compared to manual markup (red line). (Right) 
Two radiolgists’ markup (green and magenta) and overlap (white) 

superimposed on a CXR 
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that its output closely matched the annotated lung boundaries. The resulting analysis showed that 
adjusting segmentation parameters did not meaningfully improve the overall performance. However, we 
observed a 2.4% increase in AUC for TB classification when we incorporated shape differences between 
left and right lung fields as features into our existing feature set. 

5.5 Lung classification without region segmentation  

The previous method, outlined above, is based on lung segmentation followed by image feature extraction 
and classification. While it is powerful in its capabilities, there may be alternatives for quickly identifying 
abnormal CXRs. We note that radiographic presentations of pulmonary disease in CXR images such as, 
cavitation, consolidation, infiltrates, and small broadly distributed nodules, alter the appearance of the 
image in the form of corrupted and or deformed rib edge profiles. Figure 9 shows examples from both 
normal and abnormal CXRs and their corresponding rib profiles that we call edge maps. In this method, 
we measure changes in the rib profiles within the chest cavity to identify abnormal CXR images. We use 
a single feature: pyramid histogram of orientation gradients (PHOG) [66] using edge map with the goal of 
improving quality and speed of abnormality detection. A key advantage of the proposed method is that it 
does not require precise lung contours and an approximate bounding box around the lungs is sufficient. 
The Montgomery county and Shenzhen datasets were used in the evaluation. We used a neural network 
based multi-layer perceptron with one hidden layer for classification. The PHOG feature is parameterized 
by levels and orientation bins.  
 

 
 
Results in Figure 10 show that we achieved the best performance on the Shenzhen data set, using level 2 
with 15 orientation bins, where we reached a maximum accuracy (ACC) of 85.92% and area under the 
curve (AUC) of 0.91. These results nominally outperform the current system [7], and the method is 
approximately 25 times faster. An additional advantage of the system is that it is robust against opacities 
due to consolidation or pleural effusion. It does not at present have the capability of isolating pulmonary 
abnormalities; however, it can be quite powerful as an efficient and reliable staging module. We are 
considering including this capability as one processing stage in the deployed system (Section 6).  

Figure 9. Edge maps from normal (top row) and abnormal (bottom row) 
CXRs.  
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6  Screening Application Design and Development 

 
Figure 11 AMPATH “Karibuni” or mobile X-ray truck 

 
Figure 12. Truck running on generator power and with X-ray machine being conditioned by Dr. Marc Kohli (Indiana University 

School of Medicine.) 

A primary goal of this research is to make the algorithms realizable on a small-scale low-powered system 
that can be deployed in low resource settings. The driving example (pun intended) for us is deploying the 
system on a generator-powered truck in rural Kenya, shown in Figure 11 and Figure 12 The truck houses 
a portable X-ray machine, cassette reader, and laptop, the screening system and a WiFi capable router that 
are powered with a 7.5KW diesel generator. Figure 13 shows the portable X-ray machine inside the truck 

Figure 10. Accuracy (ACC) in % and Area under the curve (AUC) at different number of bins 
and levels for the Shenzhen dataset. The best performance is at Level = 2 and 15 orientation 
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(left), the cassette reader (left, on the shelf), and (right) the image acquisition laptop, the screening system 
(small black box) and router. The schematic of the workflow shown in Figure 14 has the following steps. 
First, the radiographer prepares the patient for CXR imaging following the presentation of the 
prescription. The prescription indicates the reason why the patient is being imaged. Basic patient 
information, the prescription, and rural imaging site information are recorded in the image acquisition 
software. After the imaging, the exposed cassette is inserted into the reader and the image is imported into 
the image acquisition software as a patient exam. The radiographer verifies appropriateness of the image 
quality. Next, he straightens the image, and marks the patient’s left side on the image. The image exam is 
then accepted and saved on the local PACS 7. 
 

 

Figure 13. (Left) Radiographer Peter Otunga preparing a patient for X-ray imaging with X-ray cassette reader on shelf. (Right) 
On-board image acquisition laptop showing screening system UI, NLM Screening system (black box on the right), and router. 

 
Figure 14. Schematic showing the image acquisition and screening workflow. The NLM Screening System Software modules 

appear in the box on the right side of the figure.  

NLM Screening System Hardware Design: Key hardware considerations for the screening software 
systems included: (1) low power consumption; (2) avoid use of a computer screen; (3) low cost; and (4) 

                                                        
7 PACS: Picture Archiving and Communications System is a special system for storing radiological images. 

NLM	
  Screening	
  
System	
  

Image	
  Acquisition	
  Laptop	
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concealable (for theft prevention). We selected an Intel NUC PC and configured it with 8 GB RAM and 
256 GB SSD storage. The unit, shown in Figure 13 (right)Error! Reference source not found., is 
approximately 4.3” x 4.3” x 1.3” in physical dimensions and has a peak power consumption of 50W. It 
supports wired Gigabit Ethernet LAN, WiFi (802.11n), and Bluetooth® communications.  
 
NLM Screening Tool Software Design: Images that are acquired and stored in the PACS database are in 
DICOM8 format. The DICOM software has the capability to “send” the images to any other software on 
the network that identifies itself as a DICOM NODE. Such a node acts as a listener and adheres to the 
specifications of the DICOM protocol. The radiographer (or assistant) submits the patient’s CXR to the 
listener, which submits the image to the processing system, and, on completion, records the classification 
results, and displays them in a Web browser.  
 
The server side of the screening software contains several important components, shown in Figure 14. 
They include the DICOM listener, Web server, lung segmentation module, and image classification 
module. The user interface is implemented using AJAX on the client side, which communicates with a 
Java servlet on the server side. The list of processed images is stored locally and shown in the history 
table. The classification algorithms are written in MATLAB that is wrapped in server software written in 
Java. The modules were tested for robustness and efficiency before they were included in the final 
system. The system completes its classification and display of results in less than 20 seconds.  

7 Summary and Next Steps 
The report describes ongoing research in improving the state of the art in automated computer-aided 
diagnosis algorithms for analyzing posteroanterior CXRs for cardiopulmonary diseases. We have initially 
focused on TB since opportunistic coinfections with immunocompromised HIV/AIDS patients have 
exacerbated the TB problem in sub-Saharan Africa. Our collaborators at AMPATH are running one of the 
largest HIV treatment programs in Kenya. With the assistance of NLM they have designed and put in 
operation trucks with portable X-ray units to increase their reach in rural areas and curb the spread of the 
disease. The system was deployed in February 2015, and is processing an average of 40 patients per 
week. Our algorithms could be significantly improved with data from the truck in Kenya, and we are 
working through the necessary IRB process.  
 

Table 8. Example pediatric CXRs acquired at various ages showing the variety in lung shapes and imaged regions 

    
 
Next Steps: The following enhancements are being studied as next steps: 

 
1. Pediatric CXR analysis: Our progress in adult CXR screening has piqued the interest of pediatric TB 

researchers at the National Institute of Allergic and Infectious Diseases (NIAID). There is an interest in 

                                                        
8 DICOM: Digital Imaging and COmunications in Medicine is the international standard for medical images and 
related information (http://dicom.nema.org) 

1st day Age 2 Age 4 Age 9 
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testing our system with images from their ongoing research in South Africa. As a first step, we 
evaluated our model-based lung segmentation algorithm on pediatric images and recorded reduced 
accuracy. As shown in Table 8, the lung shape changes during the pediatric developmental stages. For 
an infant the lungs are smaller, have a triangular shape, and, the cardiac contour is relatively large. The 
horizontal diameter of the heart may approach 60% of thoracic horizontal diameter [67]. Also, for 
infants and children much of the body is also often imaged which can distract the segmentation module. 
But, merely adding pediatric models to the atlas did not improve results. We conducted an image 
analysis study, which revealed three lung shape-based pediatric age groupings of 0–2, 2-10, and 11-18 
years. Modifying the algorithm according to the schematic in Figure 15, where age information is used 
to select the lung models, resulted in up to 230% improvement in segmentation accuracy measured 
using the Dice similarity measure9 [68]. 
 

 
Figure 15. Modified lung region segmentation method for adult and pediatric CXR 

2. Different pulmonary diseases: So far, all of our studies in this project have used datasets where the 
abnormal cases are explicitly active TB. In addition to screening for TB prevalence in HIV positive 
populations (~2.5% in Kenya [1]), it is our goal to also detect other cardiopulmonary diseases. Initial 
tests on the Indiana dataset, which has no cases of active TB, using the Neural Network classifier, 
described in Section 5.3, results in comparatively unimpressive scores. Even after feature selection the 
maximum ACC is 68.83% with an AUC of 0.74. When the sensitivity is set at 0.99, the false positive 
rate (FPR) is 0.86 (compared to Shenzhen TB dataset FPR of 0.0668). These results suggest that 
advanced algorithms need to be developed for detecting different cardiopulmonary diseases in CXRs.  

                                                        
9 Dice Index: A statistic used for comparing the similarity of two samples. http://en.wikipedia.org/wiki/Sørensen–
Dice_coefficient 
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Figure 16. Heat map showing locations of TB infection marked on Shenzhen dataset images. 

3. Pulmonary disease localization: When we deployed the software in Kenya, we observed that the 
radiographer on the truck informs the clinical officer at the rural clinic (who may not be trained in 
radiology) of noticeable abnormality in a CXR. A radiologist reads the image only days later; this is a 
significant delay that could result in AMPATH (or, similar organization in other regions where the 
system may be deployed) “losing” the patient. The screening system currently provides an immediate 
decision, but it does not provide information about the location of the abnormality. It does provide its 
confidence for the overall classification result. We plan on developing a heat-map interface that will 
suggest location information on the abnormality and the confidence of the classifier in its decision. 
Warmer colors indicate greater confidence while cooler colors indicate lower confidence. An initial 
rendering of the heat map is shown in Figure 16. It shows location of disease in the Shenzhen dataset. 
 

 
 

4. Using radiology order information for improving classifier decision: When patients are referred 
for imaging, the ordering physician specifies a reason that is recorded in the DICOM image header. An 
example AMPATH imaging prescription, shown in Figure 17, typically contains the patient name, 
birth year, gender, and reason for imaging. We believe that using the clinical findings (or imaging 

Figure 17. Example AMPATH radiology order for a 
"baseline" reading. 
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order) to adjust the classifier threshold may result in improved specificity without loss of sensitivity 
measures.  

 
In conclusion, this project is a unique combination of imaging research, machine learning, and practical 
deployment challenges of a computer-aided screening system in resource constrained regions. Initial 
results suggest that this project is making good on meeting NIH global health goals and NLM’s imaging 
research and technology exploration objectives, while making significant impact in addressing the 
diagnostic needs of this critical health challenge. 
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