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Abstract. Convolutional neural networks (CNNs) have become the architecture of choice for visual recognition
tasks. However, these models are perceived as black boxes since there is a lack of understanding of the learned
behavior from the underlying task of interest. This lack of transparency is a serious drawback, particularly in
applications involving medical screening and diagnosis since poorly understood model behavior could adversely
impact subsequent clinical decision-making. Recently, researchers have begun working on this issue and sev-
eral methods have been proposed to visualize and understand the behavior of these models. We highlight the
advantages offered through visualizing and understanding the weights, saliencies, class activation maps, and
region of interest localizations in customized CNNs applied to the challenge of classifying parasitized and unin-
fected cells to aid in malaria screening. We provide an explanation for the models’ classification decisions. We
characterize, evaluate, and statistically validate the performance of different customized CNNs keeping every
training subject’s data separate from the validation set. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JMI.5.3.034501]
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1 Introduction
Computer-aided diagnosis tools offer the ability to reduce
human burden in population screening and diagnosis, particu-
larly in resource-constrained settings.1 A majority of these
tools are based on machine learning (ML) techniques applied
to relevant images and often employ handcrafted features for
decision-making.2,3 However, the process demands expertise
in analyzing variability in size, background, angle, and position
of the region of interest (ROI) on the images and can be
adversely impacted by the inter- and intraobserver variability
and limited visibility to the variability in datasets acquired in
large-scale, disease-endemic regions.4 To overcome these chal-
lenges, data-driven techniques, such as deep learning (DL) also
known as deep hierarchical learning, have gained prominence.5

DL models self-discover hierarchical feature representations
from the underlying data. Higher-level features are abstracted
from lower-level features to learn complex, nonlinear deci-
sion-making functions, resulting in end-to-end feature extrac-
tion and classification.6 Unlike kernel-based algorithms, such
as support vector machines (SVMs), the performance of DL
models has been shown to scale with data and computational
resources.7

For visual recognition, an important source of information
lies in the spatial local correlation among the neighboring

pixels/voxels. Convolutional neural networks (CNNs) are
designed to exploit this spatial information through the mech-
anisms of local receptive fields, shared weights, and pooling.8

CNNs are delivering promising results in complex recognition
tasks, including speech, text, handwriting, and natural images.9–14

State-of-the-art studies reveal that in addition to delivering
promising results on image recognition tasks, CNNs are remark-
able in localizing objects to enumerate the significance of
individual pixels with respect to the decision-making process
and allow visualization in terms of heat maps in the pixel
space.15

Despite the encouraging results, there is still a lack of trans-
parency on the behavior and internal operation of these
models.16 There is no qualitative understanding of their perfor-
mance or how they might be improved. This may not be accept-
able in applications involving medical screening/diagnosis since
a poorly understood model behavior could adversely impact the
process of decision-making.17 An insight into the functioning of
the model layers and the operation of the classifier would lead to
an effective interpretation of network predictions and visualiza-
tion of image areas that stand indicative of the disease/abnormal-
ity. Of late, this topic is receiving attention from the researchers,
and several methods have been developed to visualize, under-
stand, and interpret the reasoning embodied in these predictive
models.18
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Recently, researchers across the world have begun to apply
DL tools and obtain promising results in a wide variety of medi-
cal image analyses/understanding tasks.19–21 Several studies
were performed in applying DL methods to the task of malaria
parasite detection in thin blood smear images. Liang et al.22 pro-
posed a custom 16-layer CNN toward classifying the uninfected
and parasitized cells. Features were extracted using a pretrained
AlexNet8 and an SVM classifier was trained on the extracted
features. The performance of Liang et al.’s model was compared
to that of the pretrained CNN, and they found that the custom
model was more accurate, sensitive, and specific than the pre-
trained model. In another study, Dong et al.23 compared the per-
formance of SVM and pretrained DL models, including
LeNet,24 AlexNet, and GoogLeNet,10 in classifying parasitized
and uninfected cells. In this study, red blood cells (RBCs) were
segmented from thin blood smear images and randomly split
into train/test sets. Twenty-five percent of the training images
were randomly selected to validate the models. The authors
found that deep CNNs achieved 95% classification accuracy
as compared to 92% with an SVM classifier. Gopakumar
et al.25 employed a customized CNNmodel for analyzing videos
containing a focus stack of the field of views of Leishman-
stained slide images toward the process of automated parasite
detection. The authors used a customized portable slide scanner
and off-the-shelf components for data acquisition and demon-
strated sensitivity and specificity of 97.06% and 98.50%,
respectively. Bibin et al.26 proposed a six-layer deep belief net-
work toward malaria parasite detection in peripheral blood
smear images. The authors reported 96.4% accuracy in the clas-
sification task with randomized train/test splits. While each
study elucidates specific methods of detection, none of them
provided an insight into the behavior and operation of the
trained models or justify how the performance metrics were
achieved. Also, these studies were not evaluated on a large-
scale clinical dataset. Although the reported outcomes are prom-
ising, existing approaches need to substantiate their robustness
on a larger set of images with cross-validation studies (at the
patient level) where no RBCs from patients in the training
set are reused in the validation/test set to support optimal
model selection and reduce generalization errors. Evaluation
on the patient level provides a more realistic performance evalu-
ation of the predictive models as the images in the validation/test
set represent truly unseen images for the training process, with
no information about staining variations or other artifacts leak-
ing into the training data. Tests for statistically significant
differences in performance would further assist in the process
of optimal model selection prior to deployment. It is reasonable
to mention that the state-of-the art still leaves much room for
progress in this regard. In summary, the unresolved issue of
understanding the learned behavior of CNNs toward malaria
parasite detection in thin blood smear images has become prin-
cipally relevant and is the subject of this paper.

In this work, we visualized the weights, saliencies, class
activation maps, and ROI localization in the customized
CNNs applied to the challenge of classifying parasitized and
uninfected cells to aid in malaria screening and provided an
explanation on what made these models arrive at the classifica-
tion decision. We demonstrated that in the process of using the
optimal architecture for the underlying task, we identified
exactly which regions of an image were used for class discrimi-
nation. We evaluated the performance of six customized DL
models, including a simple, sequential CNN, and untrained

architectural frameworks of the state-of-the-art CNNs, in-
cluding VGG-16,9 ResNet-50,11 Xception,13 Inception-V3,12

and DenseNet-121,14 customized for the underlying task. We
cross-validated the performance of the predictive models at the
patient level to reduce bias and generalization errors and tested
for the presence/absence of a statistically significant difference
in the performance of the models under study. This paper is
organized as follows: Sec. 2 elaborates on the materials and
methods, Sec. 3 discusses the results, and Sec. 4 concludes the
paper.

2 Materials and Methods

2.1 Preprocessing

To reduce the burden for microscopists in resource-constrained
regions and improve diagnostic accuracy, researchers at the
Lister Hill National Center for Biomedical Communications
(LHNCBC), part of National Library of Medicine (NLM),
developed a mobile application that runs on a standard Android®

smartphone attached to a conventional light microscope.1

Giemsa-stained thin blood smear slides from 150 P. falciparum
infected and 50 healthy patients were collected and photo-
graphed at Chittagong Medical College Hospital, Bangladesh.
The smartphone’s built-in camera acquired images of slides
for the different microscopic field of views. The images were
manually annotated by an expert slide reader at the Mahidol
Oxford Tropical Medicine Research Unit (MORU), Bangkok,
Thailand. The deidentified images and annotations were
archived at NLM (IRB#12972). An algorithm based on iterative
voting and level sets was applied to thin blood smear images to
detect and segment individual cells.1

The dataset consisted of 27,558 cell images with equal
instances of parasitized and uninfected cells. Positive samples
contained the Plasmodium and negative samples contained no
Plasmodium but other types of objects, including staining arti-
facts/impurities. We evaluated the predictive models through
fivefold cross-validation at the patient level to avoid biasing
and generalization errors. Table 1 shows the distribution of
cells across the different folds. The images were resampled
to 100 × 100 and 224 × 224 pixel resolutions to suit the
input requirements of the customized CNNs and normalized
to assist in faster convergence. Figure 1 shows instances of
a microscopic field of view, parasitized, and uninfected cell
images.

The models were trained and tested on a Windows® system
with Intel® Xeon® CPU E5-2640v3 2.60-GHz processor, 16-GB

Table 1 Distribution of cells at the patient level across different folds.

Folds Parasitized Uninfected

1 2756 2757

2 2758 2758

3 2776 2762

4 2832 2760

5 2657 2742

Total 13,779 13,779
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RAM, a CUDA-enabled Nvidia® GTX 1080 Ti 11GB graphical
processing unit (GPU), MATLAB® R2017b, Python® 3.6.3,
Keras® 2.1.1 with Tensorflow® 1.4.0 backend, and CUDA
8.0/cuDNN 5.1 dependencies for GPU acceleration.

2.2 Model Configurations

We evaluated the performance of six customized CNNs in the
task of classifying parasitized and uninfected cells to aid in dis-
ease screening. In the process, we proposed a simple, sequential
CNN (Fig. 2), similar to the architecture that LeCun and
Bengio27 used for image classification. The proposed CNN
had three convolutional layers and two fully connected layers.
The input to the model constituted segmented RBCs of 100 ×
100 × 3 pixel resolution. The convolutional layers used 3 × 3
filters with 2 pixel strides. The first and second convolutional
layers had 32 filters and the third convolutional layer had 64
filters. The sandwich design of convolutional/rectified linear
units (ReLU) and proper weight initializations enhanced the
learning process.11,28 Max-pooling layers with a pooling win-
dow of 2 × 2 and 2 pixel strides followed the convolutional
layers. The pooled output of the third convolutional layer
was fed to the first fully connected layer that had 64 neurons,
and the second fully connected layer fed into the Softmax
classifier.8 Dropout regularization7 with a dropout ratio of
0.5 was applied to outputs of the first fully connected layer.
The model was trained by optimizing the multinomial
logistic regression objective using stochastic gradient descent
(SGD)5 and Nesterov’s momentum.29 The models were opti-
mized for hyperparameters by a randomized grid search
method.30 The variables to be optimized were chosen and search
ranges were specified. These ranges included [1 × 10−7

5 × 10−2], [0.8 0.99], and [1 × 10−10 1 × 10−2] for the learning

rate, SGD momentum, and L2-regularization parameters,
respectively.

We also evaluated the performance of untrained architectural
frameworks of state-of-the-art DL models, including VGG-16,
ResNet-50, Xception, Inception-V3, and DenseNet-121, cus-
tomized for the underlying task. The model architecture for
these CNNs was downloaded from the GitHub repository.31,32

We used the trainable and nontrainable layers of these models,
everything up to the fully connected layers. We added a global
average pooling (GAP) layer, followed by a dense fully con-
nected, dropout, and logistic layer. The untrained models were
in the process, customized for the classification task of our
interest.

The models were optimized for hyperparameters by the ran-
domized grid search method. We initialized search ranges to
be [1 × 10−3 5 × 10−2], [0.8 0.99], and [1 × 10−10 1 × 10−2]
for the learning rate, Nesterov’s momentum, and L2-regulariza-
tion parameters, respectively. The performance of the customized
CNNs was evaluated in terms of accuracy, the area under receiver
operating characteristic curve (AUC), sensitivity, specificity,
F1-score,33 and Matthews correlation coefficient (MCC).34

2.3 Visualizing the Weights and Activations

Visualizing the weights in a trained model is a common strategy
to understand its behavior and gain a comprehensive under-
standing of the input patterns that activate the filters.15 These
weights are usually highly interpretable on the earlier layers
than in the deeper convolutional layers. Visualizing the weights
is extremely useful because a well-trained model displays
smooth, noiseless filters. Noisy filters indicate that the model
has not been optimally trained or is overfitted due to lack of
regularization. We visualized the weights and compared the

Fig. 1 Visualizing cell images: (a) field of view image, (b) parasitized cells, and (c) uninfected cells.
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network layer activations of the optimal trained model with that
of the input image to discover the learned features toward clas-
sifying the parasitized and uninfected cells. Parasitized and
uninfected cell images were fed to the trained model, and the
activations of the filters were observed and compared with
the corresponding pixel locations in the input image. Strong

positive activations were observed as white pixels and negative
activations as black pixels.

2.4 Occlusion Sensitivity Measurements

Training metrics are not always reliable, and a standard visuali-
zation technique, such as partial occlusion, helps in providing a
sanity check on the learning strategy.15 Partial occlusion studies
help in evaluating the sensitivity of the trained model to occlu-
sion. For a given image, different regions are masked, and for
each location of the occlusion mask, the prediction score of the
expected class is recorded. The process helps in identifying
whether the trained model is actually classifying based on
the task-specific features and not the surrounding context and
gaining a clear understanding of the learned behavior of the
model for the underlying task. In this study, we evaluated the
performance of the trained model by performing occlusion sen-
sitivity measurements, to gain further insight into its operation.

2.5 Visual Explanation through Saliency Maps and
Gradient-Based Localization

Saliency maps compute the derivative of the input image via
backpropagation with respect to classification.18 A high value
at a given pixel location infers that changing this pixel would
dramatically affect classification. Saliency maps provide intu-
ition of attention and help to analyze the most influential
features. Class activation mapping (CAM) helps to visualize dis-
criminative image regions used by the trained model to identify
an image category.18 An image was fed into the trained model
and the feature maps from the deepest convolutional layer were
extracted. Let gp represent the p’th feature map and Wr;p the
weight in the final classification layer for the feature map p lead-
ing to a given class r. A mapMr of the most salient features used
in classifying the image as belonging to the class r was obtained
by taking the weighted sum of the feature maps using their
associated weights given by

EQ-TARGET;temp:intralink-;e001;326;351 Mr ¼
X

p

Wr;pgp (1)

The most significant features used by the trained model in its
prediction of the class rwere identified by upscaling the mapMr
to the image dimensions and overlaying the image. However, for
constructing CAM, a GAP layer and a linear dense layer need
to necessarily follow the deepest convolutional layer. The

Fig. 2 Architecture of the simple sequential CNN.

Table 2 Performance metrics for the customized models.

Models Accuracy AUC Sensitivity Specificity F1-score MCC

VGG-16 0.951 ± 0.007 0.985 ± 0.005 0.946 ± 0.022 0.957 ± 0.027 0.952 ± 0.006 0.901 ± 0.014

ResNet-50 0.947 ± 0.008 0.982 ± 0.004 0.931 ± 0.017 0.963 ± 0.020 0.947 ± 0.008 0.893 ± 0.016

Xception 0.934 ± 0.013 0.979 ± 0.007 0.926 ± 0.022 0.942 ± 0.037 0.934 ± 0.013 0.867 ± 0.026

Inception-V3 0.946 ± 0.010 0.982 ± 0.006 0.926 ± 0.027 0.967 ± 0.015 0.946 ± 0.011 0.892 ± 0.019

DenseNet-121 0.919 ± 0.032 0.960 ± 0.028 0.868 ± 0.055 0.972 ± 0.026 0.915 ± 0.036 0.842 ± 0.062

Simple CNN 0.940 ± 0.010 0.979 ± 0.009 0.931 ± 0.026 0.951 ± 0.030 0.941 ± 0.010 0.880 ± 0.020

Note: Bold fonts refer to the highest values.
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technique cannot be used by models that violate these require-
ments. Gradient-weighted CAM (grad-CAM), a strict generali-
zation of CAM, offers gradient-based, class-specific localization
to be applied to all existing CNN models.35

2.6 Statistical Analyses

We performed statistical analyses to choose the best model for
deployment. Statistical methods, such as one-way analysis of
variance (ANOVA), are used to determine the presence/absence
of a statistically significant difference between the means of
three or more unrelated groups.36 One-way ANOVA tests the
null hypothesis (H0) given by

EQ-TARGET;temp:intralink-;e002;63;612H0∶μ1 ¼ μ2 ¼ μ3 ¼ μk (2)

where μ is the mean of parameters for the individual groups and
k is the total number of groups. If a statistically significant result
is returned by the test, H0 is rejected and the alternative hypoth-
esis (H1) is accepted to infer that a statistically significant differ-
ence exists between the means of at least two groups under
study. However, it would be appropriate to use this parametric
test only when the underlying data satisfy the assumptions of
independence of observations, absence of significant outliers,
normality of data, and homogeneity of variances.37 When any
of these conditions are violated, a nonparametric alternative,
such as Kruskal–Wallis H test (also called the one-way ANOVA
on ranks), should be used to determine the presence/absence
of a statistically significant difference between the groups.38

A post-hoc analysis is needed to identify the groups that dem-
onstrate statistically significant differences.39 We performed
Shapiro–Wilk test40 to check for data normality and Levene’s
statistic test41 to study the homogeneity of variances for the
performance metrics for the different models under study.
Statistical analyses were performed using IBM® SPSS® statis-
tical package.42

3 Results and Discussions

3.1 Metrics Evaluation and Statistical Analyses

We stopped training the customized models after 15 K itera-
tions (≈24 h) when the validation accuracy ceased to improve.
For the learning rate, we found the optimal value to be 1 × 10−5

for the simple, sequential model and 1 × 10−6 for the other
customized CNNs under study. For the Nesterov’s momentum
and L2-regularization, we found the optimal values to be 0.9
and 1 × 10−6 across the models, respectively. The customized
models converged to an optimal solution due to hyperpara-
meter optimization, implicit regularization imposed by smaller
convolutional filter sizes, usage of L2-regularization, and
aggressive dropouts in the fully connected layers. It was
observed from the cross-validation studies that the customized
VGG-16 was highly accurate, sensitive, with the most
significant AUC, F1-score, and MCC values as shown in
Table 2. However, the customized DenseNet-121 was highly
specific.

While performing statistical analyses, we found that the
results of Shapiro–Wilk test were statistically significant
(p < 0.05) across the performance metrics to signify that the
normality of data has been violated. For this reason, we per-
formed analyses with the nonparametric Kruskal–Wallis H
test. The consolidated results of Kruskal–Wallis H and post-
hoc analyses are given in Table 3. We observed that, in terms

Table 3 Consolidated results of Kruskal–Wallis H and post-hoc tests
on the performance metrics.

Metric
Shapiro–

Wilk
Kruskal–Wallis

summary Mean ranks

Accuracy p ¼ 0.000 χ2ð5Þ ¼ 8.423,
p ¼ 0.134

VGG-16 22.70

ResNet-50 18.60

Xception 10.60

Inception-V3 17.80

DenseNet-121 9.40

Simple CNN 13.90

AUC p ¼ 0.000 χ2ð5Þ ¼ 6.061,
p ¼ 0.300

VGG-16 22.20

ResNet-50 15.90

Xception 13.80

Inception-V3 16.50

DenseNet-121 8.80

Simple CNN 15.80

Sensitivity p ¼ 0.001 χ2ð5Þ ¼ 9.282,
p ¼ 0.098

VGG-16 22.50

ResNet-50 16.70

Xception 15.40

Inception-V3 15.20

DenseNet-121 6.00

Simple CNN 17.20

Specificity p ¼ 0.009 χ2ð5Þ ¼ 4.480,
p ¼ 0.483

VGG-16 14.40

ResNet-50 16.00

Xception 11.00

Inception-V3 17.60

DenseNet-121 21.40

Simple CNN 12.60

F1-score p ¼ 0.000 χ2ð5Þ ¼ 9.399,
p ¼ 0.094

VGG-16 23.40

ResNet-50 18.50

Xception 9.90

Inception-V3 17.50

DenseNet-121 9.40

Simple CNN 14.30

MCC p ¼ 0.000 χ2ð5Þ ¼ 8.240,
p ¼ 0.143

VGG-16 22.60

ResNet-50 18.40

Xception 10.60

Inception-V3 18.00

DenseNet-121 9.50

Simple CNN 13.90

Note: Bold fonts refer to the highest values.
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of accuracy, no statistically significant difference in performance
existed between the different customized CNNs [χ2ð5Þ ¼ 8.423,
p ¼ 0.134]. We observed similar results for AUC [χ2ð5Þ ¼
6.061, p ¼ 0.300], sensitivity [χ2ð5Þ ¼ 9.282, p ¼ 0.098], spe-
cificity [χ2ð5Þ ¼ 4.480, p ¼ 0.483], F1-score [χ2ð5Þ ¼ 9.399,
p ¼ 0.094], and MCC [χ2ð5Þ ¼ 8.240, p ¼ 0.143]. In terms
of mean ranks, the customized VGG-16 outperformed the

other models except for specificity where the customized
DenseNet-121 demonstrated a higher mean rank value. This
may be acceptable considering that our study is focused on dis-
ease screening where the sensitivity metric carries high signifi-
cance. If we were to select a model based on the balance between
recall and precision as demonstrated by the F1-score, the cus-
tomized VGG-16 outperformed the other models under study.

Fig. 3 Misclassified instances: (a)–(c) ground truth parasitized cells and (d) ground truth uninfected cell.

Fig. 4 Visualizing the learned filters in the custom-trained VGG-16 model: (a) block1-conv1, (b) block2-
conv2, (c) block3-conv3, (d) block4-conv3, (e) block5-conv3, (f) first fully connected layer, (g) second fully
connected layer, and (h) third fully connected layer.
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Literature studies revealed that MCC is an informative single
score to evaluate the performance of a binary classifier in a con-
fusion matrix context.43 In this regard, the customized VGG-16
demonstrated higher mean rank value for MCC as compared to
other models. The consolidated results demonstrated that the
customized VGG-16 model outperformed the other models
under study toward classifying the parasitized and uninfected
cells to aid in disease screening. Due to segmentation issues,
there were instances when the trained model failed to classify
the underlying data (Fig. 3).

Figures 3(a)–3(c) were parasitized cells by ground truth. Due
to suboptimal segmentation, the model failed to capture the dis-
criminative features to correctly classify them to belong to the
parasitized class. Figure 3(d) shows an instance of a normal cell
by ground truth. Due to improper segmentation, it extended into
the neighboring parasitized cell. The model classified this cell
image as a parasitized cell.

3.2 Visualizations

We performed visualization studies with the optimal, custom-
trained VGG-16 model for the task under study. We visualized
a random selection of filters in the first convolutional layer of the
model and observed that the filters learned features pertaining to
colors indicating cell staining variations, thus serving as color
detection filters (Fig. 4). The low-level features were abstracted
to construct complex, high-level features in the deeper convolu-
tional layers. We observed the learned filters in the last convolu-
tional layer of each block of the trained VGG-16 model. We also
visualized the dense, fully connected layers and observed that
the learned weights loosely resembled the uninfected and para-
sitized classes, respectively. The trained model decomposed the
visual input space as a hierarchical-modular framework of filters
and learned a probabilistic mapping between the learned filters
and image labels. The learned weights may not be similar to
human visual perception for the reason that the human visual
cortex is not merely convolutional but structured into function-
ally dynamic cortical columns and involves complex motor con-
trol for information processing and cognition.44 We also
visualized and compared the areas of model layer activations
with that of the input image in the process of discovering the
learned features. A parasitemic cell image was fed to the
model, and the activations of the filters in the deepest convolu-
tional layer (block5-conv3) were observed and compared with
the corresponding pixel locations in the input image (Fig. 5).
Strong positive activations were observed as white pixels and
negative activations as black pixels. We observed that the
69th filter showed the highest activation in the montage of acti-
vations. The highest filter activation identified by white pixels
corresponded to the location of the parasites in the input image.
We investigated only the positive activations by visualizing the
ReLU layer that followed this convolutional layer. The activa-
tions clearly demonstrated the areas showing parasites. We
observed the activations of this ReLU layer for different input
images. Both parasitized and uninfected cells were fed and the
activations were investigated. A pseudocolor image was gener-
ated using the “jet” colormap and a threshold was selected to
match the activation range for achieving an appealing visualiza-
tion effect. Activations higher than the threshold appeared bright
red with distinct color transitions for varying ranges. The gen-
erated heat maps were overlaid onto the input image. We
observed from these heat maps that the model precisely acti-
vated on the parasitized locations. We observed strong positive

activations only on the location of the parasites but not on the
uninfected cell. The trained model learned discriminative, task-
specific features that helped to distinguish between parasitized
and uninfected cells.

We visualized the occlusion sensitivity of the custom-trained
VGG-16 model for the parasitized cell images (Fig. 6). The
probability was visualized as a two-dimensional heat map.
Bright parts of the image corresponded to a higher probability
of being classified into the expected class. The darkest regions
indicated the locations where occlusion had the biggest effect
on the probability score. The parasitized regions were darker
because, without them, it was hard for the trained model to
understand if the image belonged to the parasitized cell class.
Thus, we observed that the trained VGG-16 model precisely
localized the parasites within the scene, as the probability of
the parasitized cell class dropped significantly when the para-
sites were occluded.

The grad-CAM output of the custom-trained VGG-16 model
with respect to the parasitized cell class is shown in Fig. 7. The
customized CNNs had a CAM-compatible structure where we
switched the Softmax activation to linear for gradient computa-
tions. We performed guided backpropagation, in which the
backpropagation was modified to only propagate positive

Fig. 5 Visualizing activations: (a) filter activations at block5-conv3,
(b) original images, (c) highest channel activations, and (d) heat
maps.

Journal of Medical Imaging 034501-7 Jul–Sep 2018 • Vol. 5(3)

Rajaraman et al.: Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection. . .



gradients for positive activations.35 We observed that the trained
model precisely localized the parasites in the input images, sig-
nifying that the model learned task-specific features and not the
surrounding context.

We also performed cross-validation studies at the cell level
by mixing the RBCs across patients and compared with the state
of the art (Table 4). We observed that the customized VGG-16
model outperformed the state-of-the-art in all performance met-
rics. The decrease in performance at the patient level may be
attributed to the staining variations between patients. We
observed that it was harder for the classifier to learn different
stains, which indicates that we may need to acquire more images
with different staining colors for training or apply color normali-
zation techniques. However, by validating the predictive models
at the patient level, which we believe simulate real-world con-
ditions, we ensured getting rid of bias, reduced overfitting, and
generalization errors toward optimal model deployment.

4 Conclusion
In this study, we performed various experiments to visualize
the weights, saliencies, class activation maps, and ROI locali-
zation toward understanding the learned behavior of the
customized CNN applied to the challenge of classifying para-
sitized and uninfected cells to aid in malaria screening. We also
provided an explanation on what made these models arrive at
the classification decision. Finally, we validated the perfor-
mance of the models at the patient and cell level with a
large-scale clinical dataset and analyzed for the presence/
absence of a statistically significant difference in their perfor-
mance metrics. We are currently performing pilot studies in
deploying the customized model into mobile devices and ana-
lyzing its performance. Currently, ML libraries for mobile
devices offer the flexibility for dynamic allocation of CPU
and GPU for training the models and testing on unseen

Fig. 6 Occlusion sensitivity measurements: (a) input image and (b) occluded regions where the class
probability decreased for the expected class.
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data. The trained model could serve as triage and minimize
delays in resource-constrained settings.
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