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Abstract. This paper describes the Drug-Drug Interaction Extraction
from Drug Labels Track, part of the 2018 Text Analysis Conference
(TAC). Participants were provided with an annotated set of interactions-
related sections of drug labels and challenged with: (1) extracting men-
tions of the precipitants, triggers and effects of drug-drug interactions at
sentence level; (2) identifying relations between interacting substances
and their types; (3) normalizing mentions and relations to several stan-
dard terminologies; and (4) determining the unique set of drug-drug
interactions across all provided sections of a drug label. Eight teams
submitted at least one run, with 26 submissions in total.

1 Background

The U.S. Food and Drug Administration (FDA) is responsible for protecting
public health by assuring safety, efficacy, and security of all FDA-regulated prod-
ucts, including human and veterinary drugs, prescription and over-the-counter
pharmaceutical drugs, vaccines, biopharmaceuticals, blood transfusions, and bi-
ological products, among others. FDA and the National Library of Medicine
(NLM) have been working together on transforming the content of Structured
Product Labeling (SPL) documents for prescription drugs into discrete, coded,
computer-readable data that will be made available to the public in individual
SPL index documents. Transforming the narrative text to structured informa-
tion encoded in national standard terminologies is a prerequisite to the effective
deployment of drug safety information. Being able to electronically access label-
ing information and to search and sort that information is an important step
toward creation of a fully automated health information exchange system. TAC
2017 addressed one of the important drug safety issues: automated extraction
of adverse drug reactions reported in SPLs [1]. An equally important and com-
plex task is automated extraction of drug-drug interaction (DDI) information.
Drug-drug interactions can lead to a variety of adverse events, and it has been
suggested that preventable adverse events are the eighth leading cause of death
in the United States [2].
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Structuring drug safety information is a task in which natural language pro-
cessing (NLP) systems can provide a great benefit to the FDA and medical
community in general. The purpose of this TAC track is to test various NLP
approaches for their information extraction (IE) performance on drug-drug in-
teractions in SPLs. While the ultimate goal is for NLP systems to extract and
code to controlled terminologies the distinct interaction from the drug labels
(the standard structured representation for drug interactions), this track also
evaluates and provides data for several intermediate tasks, such as extracting
entities (substances, interaction triggers and effects) and relations, as well as
normalizing the extracted terms and relations to the FDA substance registra-
tion system Unique Ingredient Identifiers (UNII), National Drug File Reference
Terminology (NDF-RT), SNOMED CT, and NCI Thesaurus pharmacokinetic
effects. The results of this track will inform future FDA efforts at automating
important safety processes.

1.1 Related Work

Earlier work on DDI extraction from SPLs provided some potentially useful
training data [3, 4], although none of the previous annotations exactly match
the FDA requirements for structuring DDIs for the SPL index files. In addition
to extraction of DDIs from SPLs, two information extraction areas are closely
related to the DDI TAC 2018 track: extraction of other information from SPLs
and extraction of DDI from other types of text, e.g., literature and social media.
DDI Extraction Challenges 2011 and 2013 focused on extracting DDI informa-
tion from the literature [5]. These challenges and datasets facilitated a growing
body of research, with the latest recursive neural network model that imple-
ments a tree-LSTM architecture achieving 83.8% F1-score for DDI detection
and 73.5% F1-score for interaction type classification [6]. Other types of infor-
mation that need to be extracted from SPLs include adverse drug reactions [1],
indications [7], use in special populations [8], and several others, e.g., pharma-
cogenomics biomarkers or the drug’s mechanism of action, that have not been
explored yet.

2 Data

The TAC 2018 DDI track dataset consists of 325 Structured Product Labels,
in which most or some of the following sections are annotated with drug-drug
interactions: Boxed Warning, Clinical Pharmacology, Contraindications, Dosage
and Administration, Drug and/or laboratory test interaction, Drug Interactions,
Precautions, Warnings and Precautions and Warnings.

The training set includes a TAC-specific training set containing 22 drug la-
bels in XML format that exactly follows the evaluation schema and annotation
requirements. All interactions are annotated with respect to the Labeled Drug,
i.e., the drug for which the SPL was published. The annotations in the training
set were generated semi-automatically and might be missing some interactions.
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FDA experts and NLM staff and volunteers manually corrected the automati-
cally extracted entities and relations using the interface in Fig. 1. Additional 180
labels were also available for training. These labels were fully manually anno-
tated by NLM in a comparable format in a prior effort related to the NLM-FDA
collaboration.

Fig. 1. DDI annotation interface. The online interface for registered users to annotate
label sentences assigned to them. The full SPL can be reached using the DailyMed link
in the upper right corner.

The dataset includes two test sets that are fully manually annotated by
FDA, NLM and University of Pittsburgh using the guidelines finalized before
annotation4. The first test set of 57 labels contains all of the above sections except
Clinical Pharmacology. The second test set of 66 labels provides annotations from
only the Drug Interactions and Clinical Pharmacology sections.

2.1 Annotations

Entity Annotations The following entities are annotated in the gold standard:

Precipitant – A substance interacting with the Labeled Drug could be another
drug, a drug class or a non-drug substance (e.g., alcohol, grapefruit juice.)

Trigger – A word or phrase indicating an interaction event.
SpecificInteraction – Results of interactions, e.g., severe hyperkalemia.

4 https://bionlp.nlm.nih.gov/tac2018druginteractions/

DDIvalidationGuidelines.docx
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Relation Annotations The following relations connect the above entities in an
Interaction. Each relation is limited to a specific subset of entity types.

Pharmacokinetic interactions (PK) between the Labeled Drug and the pre-
cipitant are indicated by Triggers, e.g., reducing diuretic absorption, and
other phrases indicating increases / decreases in function measurements.

Pharmacodynamic (Specific) interactions between the Labeled Drug and
the precipitant are indicated by Triggers, e.g., potentiate or increased risks
and result in SpecificInteraction.

Unspecified interactions are indicated by Triggers, e.g., avoid use.

Normalization The entities and interactions are mapped as follows:

– The interacting substances are mapped to UNII.
– Drug classes are mapped to NDF-RT NUI.
– The effect of the interaction is mapped to SNOMED CT, if it is a medical

condition.
– Pharmacokinetic effects are mapped to National Cancer Institute Thesaurus

codes.

Interaction listing The ultimate goal is to know which interactions are in the
labels, such that the interactions may be linked to structured knowledge sources.
An interaction mentioned several times should not necessarily carry more weight
than an interaction mentioned once. To test the systems on finding distinct
interactions, the gold standard contains a list of unique normalized interactions
aggregated at the document level.

3 Tasks

The track contained four specific tasks, each one potentially building upon the
previous tasks:

Task 1 Extract Mentions of Interacting Drugs/Substances, interaction trig-
gers and specific interactions at sentence level. This is similar to many NLP
named entity recognition (NER) evaluations.

Task 2 Identify interactions at sentence level, including: the interacting drugs,
the specific interaction types: pharmacokinetic, pharmacodynamic or un-
specified, and the outcomes of pharmacokinetic and pharmacodynamic in-
teractions. This is similar to many NLP relation identification evaluations.

Task 3 Normalization/Linking task. Normalize the interacting substances to
FDA Substance Registration System UNII, and the drug classes to NDF-RT
NUI. Normalize the consequence of the interaction to SNOMED CT if it is
a medical condition. Normalize pharmacokinetic effects to National Cancer
Institute Thesaurus codes.

Task 4 Generate a global list of distinct interactions in normalized form for
each label.
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Tasks 1, 2 and 3 correspond to traditional NLP information extraction (IE)
and entity linking tasks, while Task 4 involves document-level aggregation. While
the tasks were designed to build on each other, participation was optional on a
per-task basis. See Fig. 2 and Fig. 3 for examples of the sentence- and document-
level annotations expected from the participating systems.

Fig. 2. Sentence-level annotations of pharmacodynamics interactions between Zoloft
and Monoamine oxidase inhibitors (MAOIs). Three precipitants cause the same effect
indicated by the same trigger, which results in three annotated interactions.

Fig. 3. Document-level annotations of all types of interactions between Zoloft, MAOIs
and pimozide.

4 Evaluation

Participants submitted system results on the two test sets that differ in the num-
ber of annotated sections: in Test set 1, all sections except Clinical Pharmacology
were annotated, if available; in Test set 2, the Clinical Pharmacology and Drug
Interactions sections were annotated. We evaluated the sets independently to
see if adding a section that was not annotated in the training set will influence
the results.

The evaluation measures were:
Task 1 Precision/Recall/F1-measure on annotated entities (triggers, substances

and effects) using IE-style measurement (i.e., offset-dependent). Both men-
tions with type and without type were evaluated. The primary evaluation
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metric was micro-averaged F1 across the exact matched entity-level annota-
tions with type.

Task 2 Precision/Recall/F1-measure on relations. Both the full relation (all
elements of interaction, i.e., the precipitant, the trigger, the effect and the
interaction type) and the presence of relations were evaluated, both with and
without type. The primary evaluation metric was micro-averaged F1 across
full relations with type.

Task 3 Precision/Recall/F1-measure on linking entities to the specific termi-
nologies. The primary evaluation metric was F1 macro-averaged across la-
bels.

Task 4 SPL-level Precision/Recall/F1-measure on unique normalized interac-
tions. The primary evaluation metric was F1 macro-averaged across labels.

5 Participants

BUPT-PRIS Pattern Recognition and Intelligence System Lab, Beijing University of Posts
and Telecommunications. The team participated in Task 1 using bidirectional
LSTM-CRF system.

gwm Institute of Technology Tallaght Dublin, Ireland. The team participated in
Task 1 using a third-party bidirectional LSTM-CRF system with word and
characters embeddings [9]. Additional dependency-based information was
integrated into word embeddings.

HIKE DCD ZJU DCD Lab, Zhejiang University, China. The team participated in Tasks 1 and
2 using an encoder/decoder to recognize precipitants first. Then the same ar-
chitecture was used to extract effects of specific interactions and triggers for
Specific, PK and Unspecified interactions. This architecture jointly learned
named entity types such that triggers were learned as Specific, PK or Unspec-
ified trigger. For each sentence, the inputs to CNN were word and character
embeddings, and capitalization features. For precipitant mention prediction,
position features of label drug were added to inputs. The interactions were
derived from the extracted named entities based on rules. For PK inter-
actions, a rule based system assigned the interaction code. In addition to
provided training data, the team downloaded DailyMed labels, preprocessed
the raw texts and annotated them manually, following the official annotation
guidelines. The team sampled several sentences from each of the downloaded
labels, annotating a total of 1148 sentences. It turned out, that the manually
annotated sentences were extracted from some of the test set labels, but no
more than 3 or 4 sentences from each.

IBMResearch IBM research. The only team that participated in all four tasks. This is also
the only team that submitted valid XML documents in the exact required
format. The team converted the 180 training labels to TAC format, and,
due to the specifics of the 180-set annotations, decided to identify specific
interactions and their triggers jointly, and split the two in a post-processing
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step. For Tasks 1 and 2, the team used a BiLSTM-CRF model trained on
the 180 labels to recognize all entities. Then another BiLSTM-CRF model
used words, part-of-speech tags, dependency features and type features to
recognize interaction spans. Next, a Piecewise Attention-LSTM model deter-
mined the relations between recognized Biomedical Entities and Interactions,
using words, part-of-speech tags, dependency features, type features and po-
sitional indicators. The team pretrained embeddings using all FDA SPLs
and used the embeddings to initialize the models. The 22-label set was used
as the development dataset. In post-processing, entities that do not partici-
pate in a relation were removed. All references to the Labeled drug and its
class were also removed. Finally, a hybrid linguistic approach that combined
shallow parsing and syntactic simplification with pattern matching was used
to extract triggers from the recognized interactions and to further restore
discontinuous spans.
For Tasks 3 and 4, the team used learning to rank to select the best term with
the highest-ranking score from the corresponding knowledge source. First,
Lucene BM25 model was used to retrieve the top 10 candidate terms for a
given mention. Then, for each mention-candidate term pair, four scores were
computed: BM25 ranking score, Jaccard similarity score, Longest common
subsequence and word2vec similarity. Linear RankSVM then assigned a final
ranking score to each candidate term. The top term for each mention was
chosen as the normalization for the mention. For PK interactions, a heuristics
based on the mention span and its associated relationships was used to match
pharmacokinetic effects to the National Cancer Institute Thesaurus codes.

Iles LIMSI, France. The team participated in Tasks 1 and 2 using word and
character embedding as input to a CNN layer followed by a CRF to identify
entity mentions. Logistic regression was used to identify interactions.

joslin93720 Peking University and Tulane University. The team participated in Task 1
using dictionary- and rule-based preprocessing and SVM classifiers.

KlickLabs Klick Labs. The team participated in Task 1 using a two-step process. First,
a sentence classifier predicted whether a given sentence describes an interac-
tion. If the sentence was classified as having an interaction, the noun chunks
were considered interacting entities.

ttran The University of Kentucky and NLM. The team participated in Tasks 1
and 2, using a BiLSTM for joint entity recognition and interaction type
prediction. A CNN with two separate dense output layers (one for PK and
one for PD interactions) was used to predict PD effects.

6 Results

The results for all runs are shown in Tables 1 – 4. Task 4 was clearly the most
challenging (attempted only by one team with the best F1 of 11.8% compared
to F1 >= 40% for tasks 1 and 2) This is likely due to the fact that many
interactions are repeated in several sections. An optimistic view would be to
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assume that the most important and severe distinct interactions were captured
because these are usually repeated in all annotated sections. The results on
Task 1, although the highest for this evaluation, indicate that this new task is
challenging, even compared to the same DDI extraction from the literature, and
needs more attention.

Table 1. Task 1 (Named Entity Recognition) results sorted by primary F1 score.

Test 1 Test 2

Primary Relaxed Primary Relaxed

Run R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%)

HIKE DCD ZJU1 42.4 51.2 46.4 42.6 51.5 46.6 43.8 49.9 46.7 44.2 50.6 47.2
HIKE DCD ZJU3 38.3 55.2 45.3 38.5 55.5 45.5 41.0 51.5 45.7 41.2 51.9 45.9
HIKE DCD ZJU2 39.8 48.6 43.8 40.0 49.0 44.0 42.0 45.0 43.5 42.4 45.7 44.0

ttran2 37.4 29.5 33.0 37.8 29.8 33.3 40.0 36.6 38.2 40.7 37.4 39.0
ttran1 31.5 29.6 30.5 31.8 29.9 30.8 33.4 35.3 34.3 34.1 35.9 35.0

IBMResearch2 23.2 41.9 29.9 23.4 42.2 30.0 29.3 44.6 35.4 29.5 45.0 35.6
ttran3 27.5 28.6 28.0 27.7 29.0 28.3 30.3 34.9 32.4 31.1 35.8 33.3

IBMResearch1 24.8 32.1 28.0 25.1 34.6 29.0 27.9 29.7 28.8 28.1 31.1 29.5
gwm1 20.4 38.0 26.5 20.5 38.2 26.7 24.0 37.8 29.4 24.1 37.9 29.5

joslin937201 17.0 15.9 16.4 17.9 16.7 17.3 21.9 17.1 19.2 23.0 18.1 20.3
KlickLabs1 17.0 6.2 9.0 23.8 8.7 12.8 15.9 5.4 8.0 21.9 7.4 11.1
BUPT pris1 7.3 4.0 5.2 9.1 5.2 6.6 0.5 0.4 0.4 0.9 0.7 0.8

Iles1 0.3 0.4 0.3 0.3 0.4 0.3 0.1 0.3 0.2 0.1 0.3 0.2

Table 2. Task 2 results (Interaction extraction) sorted by primary F1 score.

Test 1 Test 2

Primary Relaxed Primary Relaxed

Run R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%)

HIKE DCD ZJU3 32.8 54.4 40.9 45.5 71.7 55.6 28.2 45.4 34.8 45.4 65.2 53.5
HIKE DCD ZJU1 34.5 48.9 40.5 49.6 67.0 57.0 30.7 42.7 35.7 50.7 63.3 56.3
HIKE DCD ZJU2 30.9 45.1 36.7 45.5 63.2 52.9 28.7 38.6 32.9 48.2 58.1 52.7

ttran2 21.1 22.1 21.6 38.4 40.6 39.4 22.5 24.7 23.6 44.3 49.5 46.7
IBMResearch1 16.6 24.1 19.7 31.7 44.5 37.0 16.3 20.8 18.3 36.9 42.4 39.5
IBMResearch2 16.1 25.2 19.7 29.8 46.6 36.3 16.8 23.0 19.4 36.9 50.1 42.5

ttran1 18.1 21.3 19.6 33.8 38.2 35.9 17.7 22.5 19.8 37.6 44.9 40.9
ttran3 16.6 21.9 18.9 30.6 38.9 34.3 15.7 21.4 18.1 36.1 46.7 40.8
Iles1 0.1 0.2 0.1 0.2 0.5 0.3 0.0 0.0 0.0 0.2 0.4 0.2

7 Conclusion

The goal of the TAC Drug-Drug Interaction Extraction from Drug Labels Track
was to evaluate and draw attention to the important problem of identifying the
drug interactions described in SPLs. Eight teams submitted a total of twenty
six runs across the four tasks. The results clearly indicate that the ultimate goal
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Table 3. Task 3 results (Normalization) sorted by primary Test 1 macro F1 score.

Test 1 Test 2

Micro Macro Micro Macro

Run R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%)

IBMResearch1 21.7 30.8 25.5 24.0 31.9 26.4 26.0 28.8 27.3 24.7 25.0 24.1
IBMResearch2 20.0 32.4 24.7 20.1 31.9 23.4 26.2 30.8 28.4 23.9 26.5 24.5

Table 4. Task 4 results (Distinct normalized label-level interactions) sorted by primary
Test 1 macro F1 score.

Test 1 Test 2

Micro Macro Micro Macro

Run R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%) R(%) P(%) F1(%)

IBMResearch2 9.67 17.35 12.42 9.7 17.4 11.83 9.59 12.66 10.91 7.79 9.74 8.45
IBMResearch1 8.86 14.99 11.13 9.96 15.81 11.68 8.94 11.68 10.13 7.74 9.24 8.16

of producing index files coded to multiple terminologies fully automatically is
unattainable at this time. The results achieved by half of the teams, however,
show that automated systems could help FDA produce the files faster using a
semi-automated approach. Extraction of drug names generally corresponds to
the state-of-the-art established on other text collections, such as clinical text
and the literature. Extracting triggers and effects of the interactions proved to
be somewhat harder, as reported by the IBM team. For the most part, results on
the second test set indicate there are some variations in how the interactions are
described in the Clinical Pharmacology section and the absence of the training
data for that section might explain the lower numbers for tasks 2,3, and 4 on the
second test set. The results of this evaluation have already informed the FDA
and NLM collaboration on the the next steps. We hope the availability of the
training and test collections will further encourage research of this imprtoant
problem.
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