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Abstract

Having located a misspelling, a spellchecker generally offers some suggestions for the in-
tended word. Even without using context, a spellchecker can draw on various types of
information in ordering its suggestions. A series of experiments is described, beginning
with a basic corrector that implements a well known algorithm for reversing single simple
errors, and making successive enhancements to take account of substring matches, pronun-
ciation, known error patterns, syllable structure and word frequency. The improvement in
the ordering produced by each enhancement is measured on a large corpus of misspellings.
The final version is tested on other corpora against a widely used commercial spellchecker
and a research prototype.

1 Introduction

Having located a misspelling, a spellchecker1 will generally offer a short list of

suggested corrections, often in order with the best guess at the top. In ordinary

use, a spellchecker is called upon to check whole passages of text, in which the

misspellings will appear in context. However, a spellchecker can get a long way

without using context and in fact many spellcheckers confine themselves to isolated-

word correction even though the context is there for them to use (Kukich 1992).

Even without context, there are various types of information a spellchecker can

use in making its list. At the least, a spellchecker can compare the misspelling with

a dictionary of correct spellings, treating the spellings simply as character strings.

But it can also use information about typical misspellings or other aspects of words

such as pronunciation or word frequency. In this paper I assess the value of using

1 There is some awkwardness about the term ‘spellchecker’. The structure of the word
seems to require a noun as the first part (compare ‘gatekeeper’) but ‘spell’ as a noun
refers to a magical incantation or a period of time; in the context of orthography ‘spell’ is
only a verb. But ‘spelling checker’ is cumbersome, and putting a space in (‘spell checker’)
is no help. The more widely used ‘spellchecker’ has now been accepted by most modern
dictionaries as the standard term for this item of software.
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these extra resources by developing a corrector in stages, adding modules to take

account of various types of information and evaluating the contribution of each.

For the purposes of this paper I will assume that a misspelling has been detected,

one way or another, and that we are focussing on the production of a list of sug-

gestions. I do not mean to suggest by this that the detection, as opposed to the

correction, of misspellings is an insignificant operation. Far from it. It is a non-

trivial problem with which current spellcheckers have only partial success (Pedler

2001), and a good deal of effort has gone into detecting real-word errors — the

kind of error that results from writing the wrong word, such as there for their —

for which the use of context is obviously essential (Mays et al. 1991; Golding 1995;

Golding and Schabes 1996; Golding and Roth 1999; Carlson et al. 2001; Hirst and

Budanitsky 2005). But this paper concentrates on the correction part of the task.

The work described here is specific to English. The ideas could be used for other

languages but would have to be adapted each time.

2 A test corpus

Since I am making no use of context, a suitable test corpus needs to contain no

more than a list of misspellings, each one associated in some way with its correct

spelling. Some years ago I gathered together a number of collections of misspellings

which various people had assembled in the course of their research (Mitton 1985).

Some were from schoolchildren, some from university students, some from adult

literacy students. Some were American, some British. (There were also some from

non-native speakers, though I excluded these from the research reported here.)

Most were from spelling tests though some were from free writing; the spelling

tests produced large numbers of misspellings of relatively few words while the free

writing produced misspellings of many words, but only a handful for each one. I

had them keyed in and wrote some documentation on each file; they are available

from the Oxford Text Archive (website ota.ahds.ac.uk).

For the present research, I combined all those from native speakers into a single

file, in the same format. I excluded American forms and their misspellings. Since I

was interested in the range of errors rather than their frequency, I removed dupli-

cates; definate, for example, though a popular misspelling of definite, appears only

once. (A given misspelling might occur more than once in the corpus but only as a

misspelling of different words.) The misspellings are not necessarily non-words; ten

percent are dictionary words, such as warship for worship.

The great majority of the misspellings were originally handwritten. This might

appear to limit the usefulness of this corpus for spellchecking research, since the

misspellings that spellcheckers have to deal with are, of course, keyboarded. Since

my main interest was in helping poor spellers rather than correcting typos, this was

not a problem for me. But, in any case, it is not as much of a limitation as might at

first appear. As I discuss in the next section, misspellings produced by poor spellers

are orthographically more remote from their targets than those caused by typing

slips, and consequently present a more severe challenge. A spellchecker that can

deal with poor spellings has a good chance of handling typos, but the reverse is



Ordering the suggestions of a spellchecker 3

Table 1. Extract from the corpus

$ambulance
amberlance
ambuemce
ambulence
$amendment
ammendment
$amiable
abaimable
aimabable
aimabial
aimable
aimably
aimaible
aimeable
aimealable

less likely to be true. Besides, the techniques I describe could easily be adapted to

deal more specifically with typing errors, if that was required. I return to this point

later.

The corpus I have worked with contains 35,610 misspellings of 5,964 words. This

actually excludes a small number (172) of the correct words in the original collec-

tion since they were not in my spellchecking dictionary (a dictionary derived from

the Oxford Advanced Learner’s Dictionary of Current English (Mitton 1986), also

available from the Oxford Text Archive). I excluded these and their misspellings

from analysis as there was little point in establishing repeatedly that they were

not in the dictionary. Most of these missing items, though correct ‘words’ in the

context of the corpus, are not items one would normally expect to find, in that

form, in a standard dictionary. They include, for example, proper nouns (East-

wood, Sheba), trade names (thermawear), words with apostrophes (headmistress’s),

made-up words (telltaling, unfavourites), hyphenated forms (cabbage-looking, ex-

policewoman), and two-word items (too much) where the misspelling was a single

string (tomuch). Table 1 shows a small section of the corpus; each correct word is

followed by the misspellings of that word, the correct words being marked with a $.

(The corpus contains 72 versions of amiable; only the first few are shown here.)

Most of the items in the corpus are misspellings that a spellchecker might rea-

sonably be expected to correct, like those in Table 1. But the corpus also contains

the efforts of young children and extremely poor spellers being subjected to spelling

tests way beyond their ability, so there are some misspellings — an extreme exam-

ple is the single letter o as a spelling of accordingly — that you would not expect

any spellchecker to cope with.

This corpus and the others that I describe later are available for download from

www.dcs.bbk.ac.uk/~roger.

3 A simple corrector

Most research on spellchecking has been done on typewritten input, and it has been

known for many years (Damerau 1964; Pollock and Zamora 1984) that the great



4 Roger Mitton

Table 2. All the simple-error variants of ‘pord’

apord .. zpord,
paord .. pzord,
poard .. pozrd,
porad .. porzd,
porda .. pordz

aord .. zord,
pard .. pzrd,
poad .. pozd,
pora .. porz

ord, prd, pod, por
oprd, prod, podr

majority of typing mistakes result in words that contain just a single simple error,

a simple error being defined as follows:

1. Omission of one letter — typwriter

2. Substitution of one letter — typeqriter

3. Insertion of one letter — typewritwer

4. Transposition of adjacent letters — tyepwriter

A straightforward algorithm for correcting such errors is simply to generate vari-

ations on the misspelling, look each of them up in the dictionary and keep any

that turn out to be dictionary words (see the work of Gorin, described in Peterson

(1980)). For example, given the misspelling pord, we first generate all the strings

that would give rise to pord if we omitted just one letter. We would get pord from

apord by omitting the a, and likewise from bpord and so on down to zpord. Similarly

paord to pzord and so on, ending with porda to pordz. Then we generate all the

strings that would produce pord by substitution of one letter (aord, bord and so

on), then by insertion of one letter (ord would produce pord if we inserted a p) and

finally by transposition of adjacent letters. The full list is shown in Table 2.

We keep the ones that match dictionary words — pored, cord, ford, lord, word,

pond, pore, pork, porn, port, pod, and prod. (There are more efficient ways of achiev-

ing the same result; see, for example, Oflazer (1996), Savary (2002) or Mihov and

Schulz (2004).)

Some spellcheckers assume that the first letter of the misspelling is correct, which

it usually is (Yannakoudakis and Fawthrop 1983), to save themselves the bother

of looking up words from all parts of the dictionary. The version I used, however,

tried all variants of the misspelling, including variations on the initial letter.

Applying this method to the corpus gave a success rate of 33.0%. By ‘success’ here

I mean simply that the correct word appeared somewhere in the list of suggestions.

A few more (0.2%) could be caught by the same method if spaces, hyphens and

apostrophes were inserted into the variant strings as well as letters; didn’t, for

example, which is in the dictionary in that form, would be retrieved as a suggestion

for didnt. The proportions of the four simple error types, in those misspellings that

contained just one simple error, are presented in Table 3.

This success rate of 33% is substantially lower than the figures of 80% (Damerau

1964) and over 90% (Pollock and Zamora 1984) reported for other corpora. The
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Table 3. Error types in misspellings containing just one simple error

Substitutions 42%
Omissions 33%
Insertions 19%
Transpositions 6%
Total (= 100%) 11769 ( = 33.0% of all the misspellings)

reason is probably that those corpora consisted largely of typing errors whereas

mine contains mostly spelling errors, many produced by people in spelling tests.

The proportions of the four error types also differ between different corpora. Substi-

tutions seem to top the list in spelling errors whereas omissions and insertions are

more common in typos. (Substitutions seem to predominate also in errors caused

by optical character readers, faulty transmission lines and so on (Damerau 1964;

Sun et al. 1992) though presumably the precise pattern of errors will vary with the

technology.)

For a high proportion of the misspellings (44%) this method produced no sug-

gestions at all. For 21% it produced just one suggestion, for 8% it produced two

and so on steadily downwards until for 0.4% it produced more than forty. This

last group consisted largely of single-letter misspellings; every other letter of the

alphabet (upper and lower case) was a possible substitution and all letters of the

alphabet appear as entries in the dictionary. Lists of over forty were also produced

for con, lan and san.

Obviously there are many misspellings for which this simple algorithm will fail

to find the correction. If pord appeared in ‘She pord out the tea,’ the right word —

poured — will not appear in the list. A corrector needs to cast its net more widely.

4 Assembling a collection of candidates

A different way to approach the task of correcting a misspelling is to gather a

collection of words from the dictionary that look as though they might be the

intended word and then to put them in order, in some way, so that the best guess

is at the top, the next best is second and so on. How to assemble this collection?

Given a dictionary of, say, 70,000 words on the one hand and a misspelling such as

aimabial on the other, how is the spellchecker going to assemble a collection of a

few hundred promising-looking words, hopefully containing amiable?

One way is to use a key somewhat like that developed in the SPEEDCOP project

(Pollock and Zamora 1984). The Soundex system (Odell and Russell 1918; David-

son 1962; Knuth 1973) is an earlier version of the same basic idea. We take the

misspelling and generate a compressed version of it — a key — that contains what

we hope are the salient features — the features that it is most likely to have in

common with the target. For example, people often write double consonants as sin-

gle, or vice-versa; we retain just a single consonant in the key, so that, for instance,

disapoint, dissapoint and dissappoint will have the same key as disappoint. People

often have trouble with vowels (seperate, definate) so we simply exclude non-initial
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Table 4. Key-generating algorithm

1. Keep the first letter, though merge some initial letters together: {a, e, i},
{o, u}, {g, j}, {q, c}, {f, v}, {w, r}, {z, x, s}.

2. Discard subsequent vowels and h, r, w and y.
3. Convert double letters to single and ck to c.
4. Remove t from tch, d from dg, s from xs and c from xc before i, e, or y.
5. Merge some more groups of letters together: {m, n}, {g, j}, {c, k}.
6. Finally truncate the resulting string to a maximum of five letters.

Table 5. Extract from the keyed dictionary file

tftd tufted (non-initial vowels omitted from key)
tfts thefts (non-initial h likewise)
tfts tufts
tftst thriftiest (example of a one-word group)
tftl thriftily (tftl follows tftst in key ordering)
tftls thriftlessness (key no longer than five letters)
tftls thriftlessly
tftls thriftless
tfc trafficker (tfc follows tft in key ordering)
tfc traffic
tfc terrific
tfcd trafficked (ck treated as double c)
tfcd two-faced

vowels from the key. The key-generating algorithm that I have developed is shown

in Table 4. For aimabial it produces ambl.

Using the same key-generating algorithm, we produce a key for every word in

the dictionary and we create a version of the dictionary sorted on these keys, so

that all words with the same key are grouped together and groups of words whose

keys start with the same letters are nearby. We look up the key of the misspelling

in this dictionary of keys. We pull in all the words that have the same key as the

misspelling, plus some more on either side. The key for amiable is ambl so it would

appear in the list of candidates for aimabial.

The ordering used for the keys is not actually alphabetical order, but the follow-

ing: vfpbdtqkcxszgjnmlrwaeihouy. The idea is to put the keys of misspellings closer

to the keys of their targets. For example, people do not often write a b instead of a

c (or vice-versa), but they do sometimes write a b instead of a p. Suppose someone

has written ‘The crowd disbersed.’ The key of the misspelling is dsbsd. If the keys

of the dictionary words were ordered alphabetically, the key of the target dispersed,

which is dspsd, would be some distance away since b and p are widely separated

in the alphabet. By using this alternative ordering, dsbsd and dspsd are close to-

gether, making it more likely that dispersed will appear in the list of candidates for

disbersed.

For the dictionary I used, the key-generating algorithm generated over 25,000

different keys. The key groups vary a good deal in size. The largest group — those

with cs as the key — has 183 words; at the other extreme there are over 10,000

one-word groups. Table 5 shows a small part of the keyed dictionary.

This system copes well with a range of omissions and substitutions, but not so
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well with insertions and transpositions. So, as well as producing a key from the

original misspelling, it generates variations on the misspelling and produces a key

for each of these. Taking the example of pord used earlier, it would generate ord,

prd, pod and por to cope with a possible insertion, and oprd, prod and podr to cope

with a possible transposition, producing a key for each of these variations. (Some of

these keys will be the same — prd, pod, prod and podr for example, all produce pd

because non-initial vowels and r ’s are ignored.) It pulls in words for each of these

keys and adds them to the collection of candidates.

Testing this system on the corpus of misspellings described earlier, the collections

of candidate words averaged about six hundred; the smallest collections were in the

low hundreds and the largest just over a thousand.

The system had considerable success in retrieving the required word. For 74.2%

of the misspellings, the required word was in the collection of candidates. (Bear in

mind that this corpus does not contain duplicates of common misspellings and that

many of the misspellings are extremely remote from their target word.)

Not surprisingly, its successes largely included those of the simple method de-

scribed earlier. Any target word that appeared in the list retrieved by the simple

method was likely to appear also in the (much larger) list retrieved by the key

system. There were some exceptions, however, and combining the lists produced by

the two methods gave a success rate of 76.9%.

5 Ranking the candidates

Getting the target word into the collection of candidates is only the first step. A

spellchecker that offered the required word buried somewhere in a list of several

hundred suggestions would not be much use. How is the spellchecker to assess how

good each of these candidates is?

With few exceptions, all the 51 misspellings of bicycle in the corpus are obviously

misspellings of bicycle rather than of any other word. The following are a sample:

bicecyle, biclyce, bicycel, bikecule, biycicle, bycicyle. They have the correct first

letter; they have most of the other letters, and they have quite a few in the right

order.

This suggests a simple algorithm. We try to match up the letters in the candidate

one for one with those in the misspelling and we count any that are left unmatched.

If we do this with bicycle and, say, bikecule, we get five because we are left with

a y and a c from bicycle unmatched in bikecule (bikecule has one c but bicycle

has two), and a k, an e and a u in bikecule unmatched in bicycle. Then we do the

same with letter pairs; bikecule fares rather badly here — bicycle has the pairs ic,

cy, yc and cl all missing from bikecule, and bikecule has ik, ke, ec, cu and ul all

missing from bicycle, giving nine unmatched pairs. If the first letter is different,

we add on some more penalty points, say two more; bikecule begins with the right

letter so its final score is 5 + 9 giving 14. (There are many variations on this idea

of matching letters or groups of letters, mostly more complicated than this one —

see, for example Kukich (1992) or Angell et al. (1983).)

The higher the score, the worse the match; a perfect match (comparing bicycle
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Table 6. Position of target word in list of suggestions, with letter-matching

algorithm

Target word first in list of suggestions 33.2%
In top three 47.4%
In top six 55.1%
In top ten 60.0%
Retrieved from dictionary but listed below 10th 16.9%
Not retrieved from dictionary 23.1%
Total misspellings = 100% 35610

with bicycle) would score zero. The other attempts at bicycle in the list above look

as though they ought to get lower scores than bikecule and indeed they do — some

score four, others six.

If we do this with each of the candidates for a given misspelling, then each will

receive a score and we can then put the candidates in order, the ones with the

lower scores being the ones that match the misspelling most closely and which are

therefore most likely to be the word required. For example, for bikecule we get

buckle at the top of the list with twelve, then a group with fourteen — Beccles,

bickers, bicycle, bucked, bucket and a few more — then a group with sixteen and

so on. (The ordering of candidates that have the same score is not significant.)

Table 6 shows the results of applying this algorithm to the candidate lists for

all of the misspellings in the corpus. It shows that, for 33.2% of the misspellings,

the algorithm offered the required word as the first choice in its list; for 47.4%

the required word came in the top three suggestions, and so on. For 23.1% of the

misspellings, the algorithm had no chance of putting the required word at the top

of the list since the required word was not in the set of candidates retrieved from

the dictionary in the first place.

The performance of this algorithm is strongly related to the length of the mis-

spelling. If we consider the number of times it offers the required word as the first

in its list, it manages this only 13% of the time when the misspelling is four letters

or less, but this rises steadily to 76% for misspellings of fifteen letters or more.

How much improvement does Table 6 represent over the simple system described

earlier? The two systems do not lend themselves to direct comparison. The first

system simply produces a list of candidates, generally short but in no particular

order; the second retrieves a much larger list but puts it into order. However, if we

say that the second system has achieved a success if it offers the target word in its

top ten suggestions, then the success rate has risen from 33% to 60%.

6 Minimum edit distance

Consider the misspelling highdrollick. This is obviously meant to be hydraulic. The

algorithm just described, however, does not offer hydraulic as its first suggestion,

or even in its first twenty suggestions. Its first choice is highroad, with a score of

sixteen, then highball, highbrow, highflier, highjack and highroads, all with eighteen.

What is it that seems obvious to us but which the algorithm is clearly missing?
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High is pronounced like hy — i and y are pronounced the same in certain contexts

and gh in certain contexts is silent. The au in hydraulic is often pronounced like

the o of doll. People often write a double letter for a single, like ll for l; ck for c is

the same sort of error. Taking all this into account, hydraulic is a strong candidate

for highdrollick. Since no other word matches highdrollick nearly so well, we settle

on hydraulic as the clear favourite.

How can we get a spellchecker to use the same sort of information so that it will,

at least, include hydraulic in its list of suggestions and, better still, put it at the

top? The method of minimum edit distance, generally attributed to Levenshtein

(1966), further developed by Wagner and Fischer (1974) and Veronis (1988), and

described in detail in my book (Mitton 1996), provides a mechanism for this.

Briefly, we take a misspelling — say scmlberd — and a suggested possible correc-

tion — say scrambled — and we work out how we can get from one to the other with

the minimum amount of editing. By ‘editing’, I mean inserting a letter, deleting a

letter, substituting one letter for another, or transposing adjacent letters. We can

get from scrambled to scmlberd by deleting ra, transposing the bl and inserting an

r. If we put a notional cost on each of these operations, we arrive at a total cost for

editing scrambled into scmlberd.

We can regard this cost as a sort of distance. The more editing operations we

need, to get from one string to another, or the more costly the editing operations

are, the more remote from each other the strings are. Scmlberd and scrambled are

medium close. Not as close as, say, sissors and scissors but closer than dufleerth

and beautiful. (All these examples are taken from the corpus.)

This provides a method by which a spellchecker can take account of the sort

of things I described in my analysis of hydraulic. The spellchecker can be primed

with the information that i for y is quite a likely substitution — either in general

or for this word in particular — and will therefore attach only a low cost to this.

Likewise it can be told to attach a low cost to the insertion of gh in words that

have a fragment that rhymes with high, a low cost also to the substitution of o for

the au, to the insertion of an extra l or of a k after the c. The result is that, when

it computes the distance between highdrollick and hydraulic, it comes out with a

low figure — it considers them to be quite close.

In the highdrollick example, the pronunciation of the misspelling would match

that of the target word, but this is not always the case (Mitton 1987). Rember and

remeber are common misspellings of remember, for example, as is lastest for latest.

See also scmlberd and some of the attempts at amiable in Table 1. The method

can cope just as well with errors unrelated to pronunciation, so long as they can be

anticipated — a spellchecker can be primed to attach a low cost to the omission of

em in remember or to the insertion of an extra s in latest. The reason that people

have trouble with spelling in English is that English spelling is quirky. Priming the

dictionary in this way provides the corrector with information about the quirks.

Of course the minimum-edit algorithm can only home in on the target word if

the target word is in the collection retrieved from the dictionary. So if the dictio-

nary is primed with information about the places where people are likely to omit

letters or to substitute one letter for another, it is necessary to take account of this
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Table 7. A second extract from the keyed dictionary file

ftn fortune
ftn fourteen
ftn furthermore (m and n merged)
ftn phaeton (ph might be misspelt as f)
ftn photon
ftnbl fissionable (ss might be misspelt as t, as in nation)
ftnd fathomed
ftnd fattened
ftnd frightened (g likely to be omitted)

Table 8. Position of target word in list of suggestions, with minimum-edit

algorithm

Target word first in list of suggestions 47.2%
In top three 61.5%
In top six 68.3%
In top ten 72.2%
Retrieved from dictionary but listed below 10th 12.2%
Not retrieved from dictionary 15.3%
Total misspellings = 100% 35610

information when building the keyed version. For example, the entry for knuckle

contains the information that the k is likely to be omitted. Two keys are generated

for knuckle — one with the k and one without: (kncl and ncl) — so knuckle appears

in two places in the keyed version of the dictionary. Now, if the misspelling is nuckle

(or nucle or nukel or any variation with the key ncl), knuckle will appear in the

collection of candidates.

Given these extra entries, there is a better chance of getting the required word

in the collection of entries retrieved from the dictionary. In fact its success rate on

the corpus is 84.7%, a useful improvement on the 76.9% that was reached without

the extra entries.

Table 7 presents a second extract from the keyed dictionary, this time illustrating

some of these extra entries (phaeton for example will also appear under ptn).

Given a dictionary primed with this sort of information, the task of the minimum-

edit scoring system is to bring the target word as close as possible to the top of the

list. Table 8 shows how much success it had.

While the simple-error method achieved 33% success and the letter-matching

algorithm 60%, the minimum-edit system put the required word in its top ten

suggestions for 72% of the misspellings. More than half of its failures were due

to the candidate-collection process — the required word was missing from the list

of words it was given in the first place. Though occasionally it placed the target

word way down the list, the system generally did well. When it was provided with

the required word somewhere in its initial list of (several hundred) candidates,

the minimum-edit system placed it among the top ten suggestions for 85% of the

misspellings, and more often than not at the top of the list.
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7 Anticipating errors

How did we get all this information into the dictionary — that hy might be misspelt

as high and so on? In my earlier work (Mitton 1996) I observed that people often

rely on the pronunciation of a word to help them to spell it, and I described a

program to generate a ‘phonetic’ spelling for each word (my dictionary contains

pronunciations) — for example, yot for yacht — and to calculate the edit distance

between the two. If this was greater than zero, the program tried flagging the letters

of the correct spelling in various ways, recalculating the edit distance each time, and

it retained those flags that provided the minimum edit distance. So yacht ended up

with markers on the a, c and h indicating that an o might be substituted for the

a and that the ch might be omitted. I then ran the corrector over large corpora of

errors, collecting those errors, or patterns of error, on which it performed poorly,

and adding more flags.

More efficient ways of achieving a somewhat similar result have been developed

since I did this part of the work. Ristad and Yianilos (1998) describe how the

costs can be derived by computer from a large corpus, with no need of human

intervention. They applied their system to speech recognition. Brill and Moore

(2000) describe a different version of this idea for spellchecking. Taking a large

corpus of misspellings paired with correct words, their program matches fragments

in each pair and counts the frequency with which one is produced for the other, for

instance ent for ant. For example, if the corpus contained dependent as a misspelling

of dependant, this would add one to the ent/ant count. Given a misspelling to

correct, the program applies a version of the minimum-edit algorithm described

earlier, except that it substitutes fragments rather than single letters and decides

on the best match on the basis of the frequencies rather than some a priori costs,

on the grounds that, the more frequently a substitution appeared in the training

corpus, the more likely it is to figure in this misspelling.

This makes no explicit reference to pronunciation, though it makes use of pro-

nunciation indirectly — the reason that ent emerges from the training corpus as a

frequent misspelling of ant is that it often corresponds to an unstressed syllable, as

in dependant, where the pronunciation gives no help to the speller. (You wouldn’t

expect the same problem with words like chant or eggplant.) Toutanova and Moore

(2002) have built on this work by taking explicit account of pronunciation. They

also count matches of fragments in pairs of misspellings and correct words, but

they are matching pronunciations, of the misspelling on the one hand, as estimated

by a text-to-speech converter, and of the correct word on the other, taken from a

pronunciation dictionary. Given a misspelling to correct, their program produces a

pronunciation for it and then matches candidates by the same method as Brill and

Moore, but this time with fragments of pronunciations rather than of spellings. An

example of their success is offering gristle as the first suggestion for the misspelling

grissel (the Brill and Moore system offers grizzel).

Compared to my dictionary-flagging scheme, these more automated systems are

a lot more efficient at extracting useful patterns from error corpora. Whether they

also outperform it in suggesting corrections is hard to say; the error corpus that
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Brill and Moore used both for training and for testing is not public, so it is not

possible to run my system over their data. The alternative — developing a version

of their system and running it over my data — is less satisfactory, but the appendix

describes an attempt to do this.

8 Combining minimum-edit with letter-match

While minimum-edit works better than the simpler letter-matching for most of the

misspellings, there are some misspellings that fare better with the letter-matching.

Take biclyce for example. This is fairly obviously a misspelling of bicycle but the

minimum-edit method offers bicycle at a disappointing eighth place in the list, be-

hind bucolic, belike, bucolics, bellyache, bakelite, basic and Bexley. (Actually bakelite

to bicycle all get the same score and it is just bad luck that bicycle comes last.) The

letter-matching method, by contrast, puts bicycle at the top of its list for biclyce

because they have the same letters and with the same one at the front.

This suggests that a combination of the two methods might work even better.

There are three elements to the letter-matching — the initial letter, the number of

matching single letters and the number of matching letter-pairs. A few experiments

made it clear that there was nothing to be gained by taking account of the letter-

pairs — the minimum-edit had already taken full account of this — but that small

improvements could be made by attaching more weight to the initial letter and the

number of single-letter matches.

Augmenting minimum-edit in these ways produced a difference of only about one

percent, but it was in the right direction. When compared with minimum-edit alone,

some misspellings were handled better, some worse, but more of the first than the

second. (The combined method put bicycle second in the list for biclyce, still behind

bucolic, but now ahead of bellyache and the rest.) The proportion of misspellings

for which the target was offered in the top ten — 60% with letter-matching alone,

72% with minimum-edit alone — was now 73%.

9 Homophones

Ten percent of the misspellings were themselves dictionary words, such as angel for

angle. Some of these were caused by people selecting the wrong spelling from a set

of homophones, such as bawd or board for bored. Words like bawd, board and bored

were flagged as homophones of each other in the dictionary, so it was possible to

detect when a candidate was a homophone of the misspelling and to promote it up

the list.

On the whole this had the desired effect; for 180 of the misspellings, the required

word moved up the list. On the other hand, for 140, the required word moved down

— the promotion of bowl for boll, for example, caused the required word ball to

move down. But the upward movement of those that went up was far greater than

the downward movement of those that went down; colonel, for example, moved up

the list for the misspelling kernel from eighth place to second, bored moved up the
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list for bawd from 27th to fourth, and choose moved up the list for chews from 29th

place to third.

Since there were so few of these, however, relative to the size of the whole corpus,

the overall improvement was tiny.

10 Syllables

The number of syllables in a misspelling is a further possible clue to the word

required but is not taken explicitly into account by the letter-match or minimum-

edit algorithms. The number of syllables in a word is a function of its pronunciation,

not its spelling, but in the case of misspellings, except for those that happen to be

in the dictionary, we do not know the pronunciation and have to make an estimate

of the number of syllables from the spelling.

In my book (Mitton 1996) I present an algorithm for doing this. First we strip

apparent prefixes and suffixes from the spelling, perhaps adding to the syllable

count as we do so — for example, the suffix ed counts as a syllable in hunted but

not in chased. Then we traverse what remains counting groups of vowel-letters,

though trying not to count silent e’s (placemat has two syllables, not three).

The dictionary I was using contained the number of syllables for each word, so,

though the syllable-counter was intended for use with misspellings, it was possible

to test it on dictionary words. It calculated the right number of syllables from the

spelling for 96% of the words. Improving it further would have meant incorporating

a table of exception words and there was no point in doing this since misspellings

would never be in the table.

It was now possible to promote those candidates that had the same number of

syllables as the misspelling. Disappointingly, this made hardly any difference, and

the little difference that it did make was in the wrong direction.

However, though misspellings often had fewer syllables than the target word, they

rarely had more. I therefore demoted those candidates that had fewer syllables than

the misspelling. The effect of this was at least in the right direction, but still very

small, improving the success rate by less than one per cent.

11 Word frequency

Consider the misspelling arigments. The spellchecker comes up with arguments as

its first choice, but then has arraignments, regiments and arrangements, all with

the same score. Other things being equal, presumably arrangements is preferable

to the other two, just because it is a much more common word. And indeed, in

this case, this would have been the right decision — arrangements was in fact the

required word.

At ninety million words, the written part of the British National Corpus provides

word frequency data that is adequate for this task. The BNC actually provides a

frequency for a word with a part-of-speech tag — one frequency for surf (noun)

and another for surf (verb) for example. For the present purpose I simply summed

these, except for the frequencies of ordinary words used as proper nouns. (For
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Table 9. Position of target word in list of suggestions, after adjusting for

word-frequency

Target word first in list of suggestions 56.4%
In top three 69.2%
In top six 74.6%
In top ten 77.6%
Retrieved from dictionary but listed below 10th 7.1%
Not retrieved from dictionary 15.3%
Total misspellings = 100% 35610

example I retained the frequency of thatcher as an ordinary noun, not its much

larger frequency as a proper noun.)

At the least I could reorder those runs of candidates that had the same minimum-

edit score, but I found that it further improved the rankings if I also used the

frequencies to adjust the scores. After some experimentation I settled on a simple

algorithm, dividing words into the following groups by their frequency (i.e. the

number of times they occurred in the BNC) — 0–50, 51–200, 201–500, 501–1000,

1001–2000, over 2000. Candidates in the 0–50 group had five added to their cost,

51–200 four and so on. Table 9 shows the effect.

Factoring in word frequency has an appreciable effect. The previous best score

of around 74% of misspellings for which the correct word appeared in the top ten

suggestions has now gone up to over 77%. The great majority of the failures are due

to the initial stage of trawling the dictionary for possible candidates. If the correct

word gets into this initial list, the system makes a good job of putting it near the

top, getting it into the top ten over ninety percent of the time and getting two out

of three at the very top.

It might be argued that, since many of the misspellings came from spelling tests,

this result might simply reflect the fact that the creators of the tests avoided un-

common words when choosing their test words. But the same effect shows up when

run on misspellings derived solely from free writing.

12 Different data, and comparisons of performance

Thus far I have been testing the spellchecker on the same data that I have been using

to develop it. In general this is not good practice as it runs the risk of tuning the

software to the particular features of the test data, producing a spuriously high level

of performance which does not generalise to other data sets. So I produced another

set of test data, containing broadly the sort of misspellings that my spellchecker

was meant to deal with, but from a different source from any of those in the original

set.

The book English for the Rejected (Holbrook 1964) contains extracts from the

creative writing of school pupils in their final years of secondary school. The extracts

preserve the spelling and punctuation of the originals. These were pupils who had

a poor command of written English. The following samples are representative:

When they are young you have to wate 3 days then you can injeck them for diseases you
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Table 10. Position of target word in list of suggestions, using Holbrook data, with

Word for comparison

Experimental Word
spellchecker

First 57.0% 44.0%
Top three 74.2% 61.6%
Top six 80.9% 67.9%
Top ten 83.9% 70.4%
Total = 100% 1187 1187

have mack shore they have drye straw when you clean them out you should not leave a
falk in with them because the mother might nock it down and the little pigs might stab
them souve

The leavs are small The apple fall in Aount time When yow get to the corres inside the
corres are pips yow thorght the corres on the fire to brun then.

I created a file containing all 1788 misspelt words from these extracts, with the

correct word in each case (except for twenty where I couldn’t work out what the

correct word was supposed to be). As with my earlier experiments, I recorded how

well the spellchecker coped with each misspelling.

For a point of comparison, I also ran them through the spellchecker that comes

with Microsoft Word (Office Word 2003, U.K. English) and similarly recorded where

the correct words came in its lists of suggestions. (Where the misspelling contained

a space, as in to gether, I replaced the space with an underscore so that Word tried

to correct the whole thing; otherwise it would attempt to correct only the gether.)

Occasionally, Word offered no suggestions at all, e.g. for elecenician (electrician),

but it generally offered between one and ten, never more than ten. There were 581

that Word did not consider to be errors; these had to be discounted since Word did

not attempt to offer suggestions for them. The results are in Table 10.

The results of this test are reassuring. The spellchecker worked just as well on

this data as on the data I used for development, and, compared with a commercial

spellchecker in widespread use, it makes better suggestions for a range of mis-

spellings that a spellchecker ought to be able to correct, such as alloud, eney,

brecfast, nabour, secutery, thort, tung and whated.

I chose Word for this test because it is widely used and readily to hand, but

a more appropriate point of comparison might be a spellchecker developed by

other researchers. In addition, most of the misspellings used for the development

of my spellchecker, and all of those in the Holbrook data, were originally hand-

written, whereas the misspellings that spellcheckers actually have to deal with are

keyboarded. I was able to address both of these points by comparing my results

with recent work by Deorowicz and Ciura (2005). They describe an experimen-

tal spellchecker and test it on two files of errors, which they have made publicly

available. They report impressive results in comparison with several public-domain

spellcheckers.

The spellchecker developed by Deorowicz and Ciura has a table of possible sub-

string substitutions and it applies as many as it can to the misspelling, retaining
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Table 11. Position of target word in list of suggestions, using aspell and wikipedia

data, with Deorowicz and Ciura for comparison

aspell aspell wikipedia wikipedia
Experimental Deorowicz Experimental Deorowicz
spellchecker and Ciura spellchecker and Ciura

First 71.1% 66.3% 92.9% 94.1%
Top two 83.2% 75.5% 97.2% 97.4%
Top three 88.6% 79.6% 97.9% 98.3%
Top five 91.4% 83.6% 98.6% 98.9%
Top ten 94.4% 85.5% 99.0% 99.0%
Total = 100% 499 511 2154 2196

those of the resulting forms that match dictionary words. (In this respect it re-

sembles the work of Brill and Moore (2000) described earlier, but they build their

table a priori rather than deriving it automatically from a training corpus.) Sup-

pose, for example, that it had the following substitutions in its table: ll to l, ow to

ou and d$ (terminal d) to ed, and suppose that it was faced with the misspelling

allowd. By applying all these substitutions, it would find that allowed and aloud

were dictionary words (as well as finding that alloud, alloued, alowd and so on were

not). They have costs (also assigned a priori) for each of these substitutions, which

enables them to place the resulting list of candidates in order of preference. Their

method of dictionary storage (a minimal acyclic deterministic finite automaton)

enables them both to apply the substitutions and to check the results very rapidly.

The two files of errors that they use as test data are simply lists of misspelt words

with their correct forms, without context. Neither contains duplicates. The first —

aspell — is derived from a collection of ‘hard-to-correct’ errors used for testing the

GNU Aspell spellchecker (Atkinson 2006). There are 525 misspelt words, each with

a single correct form. They seem to be a mixture of typos (olf for old) and poor

spellings (funetik for phonetic). While some of them are indeed hard to correct

(accosinly for occasionally), many are not (occurence for occurrence).

The other — wikipedia — is derived from a set of ‘typical’ spelling errors made

by Wikipedia editors (2005). This is larger, with 2240 error words, mostly typos

or minor errors, though some more serious (charistics for characteristics) and a

handful that are errors of language or usage rather than spelling (teached for taught,

Mohammedans for Muslims). For a small proportion of the error words (eight per

cent), more than one correct form is provided, for example villain, villein and villi

as correct forms for villin.

I rewrote the files in the same format as my own corpus (Table 1). Since my

spellchecker uses a British English dictionary, I added British spellings as correct

forms. Following Deorowicz and Ciura, errors whose correct form was not in the

dictionary were excluded from the analysis, as were errors that matched dictionary

words. Where more than one correct form was given for an error, only the highest-

ranking candidate was counted in the results (again following Deorowicz and Ciura).

For example, villain came first in the list of suggestions for villin while villein came

third, so villin was counted as an error for which the spellchecker proposed the

correct word first in its list.
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Table 12. The percentage of misspellings for which the spellchecker was successful,

for successive enhancements of the spellchecker

First Anywhere/
Top ten*

Reversal of single simple errors — 33.0%
Search key with letter-match algorithm 33.2% 60.0%
Search key, minimum-edit and letter-match 48.4% 73.4%
With homophones and syllables 49.4% 73.9%
With word frequency 54.2% 76.4%
Total misspellings = 100% 35610 35610

*For the Reversal method, a success was when the target was in-
cluded anywhere in its list, regardless of the size of the list.
For the other methods, the figures show the proportion of mis-
spellings for which the target appeared as the first suggestion,
or in the first ten suggestions.

Table 11 presents the results of this exercise. The differences in the base totals

reflect the different sizes of the dictionaries used by the two spellcheckers. Mine uses

a smaller dictionary, so more of the errors were excluded because their target word

was not in the dictionary. (This does not mean that they were harder to correct; in

fact the errors in them were mostly fairly minor.)

These results are reassuring. Though my spellchecker was directed at correcting

poor spellings rather than typing slips, it seems to cope acceptably with keyboarded

input. It also bears comparison with a recent research prototype.

13 Conclusion

The results presented in the previous section give some idea of the spellchecker’s

level of performance, but it was not the primary purpose of this paper to compare

this spellchecker with others. The main aim was to assess the amount of improve-

ment in performance to be gained from each of various enhancements. Table 12

brings together some key figures from earlier tables, to show these effects on per-

formance.

Compared to typos, misspellings pose a sterner test for a spellchecker. The simple

error-reversal algorithm, which performs well with typos, succeeded with only a

third of the misspellings in this corpus. Computing a key from the misspelling and

using this to retrieve candidates from a keyed version of the dictionary had much

more success in finding the required word, and a simple letter-matching algorithm

was often able to place the required word at or near the top of the list. A significant

improvement on this was made by priming the dictionary with information about

the quirks of English orthography and hence the mistakes that people are likely

to make, and using the minimum-edit algorithm to take account of this. Where

the misspelling was itself a dictionary word, promoting homophones up the list

made a useful contribution, but this was applicable in only a few cases. Attempting

to take account of syllable structure made very little difference. Finally, factoring
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word frequency into the ordering of the suggestions made a further worthwhile

improvement.

How much more mileage remains to be made with isolated-word correction? In

terms of the challenge that they present to a spellchecker, misspellings range from

trivial to impossible. The further you go, the harder it gets.

In the most successful version of the spellchecker, most of the failures occur at the

candidate-retrieval stage — the required word is not among the initial set retrieved

from the dictionary. This might suggest that more effort should be applied to this

process, but I would not be optimistic. With few exceptions, any extra required

words retrieved by a wider or cleverer trawl are going to have little in common with

their misspellings — that’s why they are on the fringe of the candidate collection

in the first place — so they are unlikely to make it to the top of the list. If we can’t

get the required word close to the top, we might as well leave it in the dictionary.

But there might be more scope for improving the ordering of the top twenty. This

is where I would expect context to help.

14 Appendix: a further comparison

In Section 7, I sketched the system described by Brill and Moore (2000). In order

to compare my system with theirs, I implemented a version of the system described

in their paper. I used as the training set the main error corpus that I have been

referring to in most of this paper and created from it a table of word-fragment

substitutions, up to length four, with probabilities (actually three tables, one for

word-initial fragments, one for word-ending fragments and one for the rest). For the

testing phase, I wrote a module to rank a series of candidate corrections for a given

misspelling in order of probability, using these tables. My version of their system

should be comparable with the one that produced the row marked ‘Max window 3’

in Table 2 of their paper.

To make a comparison, I used my own system to generate a list of candidates for

a misspelling and then put these candidates into order using my system on the one

hand and my version of the Brill and Moore system on the other.

The full Brill and Moore system actually has a further phase in which they

employ a ‘language model’ — they rescore the top five candidates by using a table

of word-trigram probabilities. I could not reproduce this since I did not have the

data it was based on. In a sense, my system also employs a language model, albeit

a simple one, in the use of word frequency, so I disabled the reordering by word

frequency from my system for the purpose of these comparisons.

The test data sets were the aspell and wikipedia corpora described above, minus

a few items that began with upper-case letters, since my version of the Brill and

Moore system did not handle these correctly.

The results are presented in Table 13.

I would not attach much significance to the detail of these results; my imple-

mentation of Brill and Moore’s system may well differ in many small but perhaps

important ways from the original. But they suggest, like the Deorowicz and Ciura
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Table 13. Position of target word in list of suggestions, using aspell and wikipedia

data, with Brill and Moore for comparison

aspell aspell wikipedia wikipedia
Experimental Brill and Experimental Brill and
spellchecker Moore spellchecker Moore

First 73.5% 68.3% 93.5% 87.5%
Top three 90.8% 85.2% 98.5% 95.2%
Top six 95.6% 91.9% 99.4% 96.8%
Top ten 97.1% 96.0% 99.7% 97.7%
Total = 100% 480 480 2086 2086

results, that my spellchecker at least bears comparison with some other recent ex-

perimental systems.
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