You are here

Lung boundary detection in pediatric chest x-rays.

Printer-friendly versionPrinter-friendly version
Proc. SPIE. 9418, Medical Imaging 2015: PACS and Imaging Informatics: Next Generation and Innovations, 94180Q. (March 17, 2015) doi: 10.1117/12.2081060.
Abstract: 

Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.

Candemir S, Antani SK, Jaeger SR, Thoma GR. Lung boundary detection in pediatric chest x-rays. Proc. SPIE. 9418, Medical Imaging 2015: PACS and Imaging Informatics: Next Generation and Innovations, 94180Q. (March 17, 2015) doi: 10.1117/12.2081060.