You are here

Detecting drug-resistant tuberculosis in chest radiographs.

Printer-friendly versionPrinter-friendly version
Jaeger S, Juarez-Espinosa OH, Candemir S, Poostchi M, Yang F, Kim L, Ding M, Folio LR, Antani SK, Gabrielian A, Hurt D, Rosenthal A, Thoma G
Int J Comput Assist Radiol Surg. 2018 Dec;13(12):1915-1925. doi: 10.1007/s11548-018-1857-9. Epub 2018 Oct 3.
Abstract: 

PURPOSE:

Tuberculosis is a major global health threat claiming millions of lives each year. While the total number of tuberculosis cases has been decreasing over the last years, the rise of drug-resistant tuberculosis has reduced the chance of controlling the disease. The purpose is to implement a timely diagnosis of drug-resistant tuberculosis, which is essential to administering adequate treatment regimens and stopping the further transmission of drug-resistant tuberculosis.

METHODS:

A main tool for diagnosing tuberculosis is the conventional chest X-ray. We are investigating the possibility of discriminating automatically between drug-resistant and drug-sensitive tuberculosis in chest X-rays by means of image analysis and machine learning methods.

RESULTS:

For discriminating between drug-sensitive and drug-resistant tuberculosis, we achieve an area under the receiver operating characteristic curve (AUC) of up to 66%, using an artificial neural network in combination with a set of shape and texture features. We did not observe any significant difference in the results when including follow-up X-rays for each patient.

CONCLUSION:

Our results suggest that a chest X-ray contains information about the likelihood of a drug-resistant tuberculosis infection, which can be exploited computationally. We therefore suggest to repeat the experiments of our pilot study on a larger set of chest X-rays.

Jaeger S, Juarez-Espinosa OH, Candemir S, Poostchi M, Yang F, Kim L, Ding M, Folio LR, Antani SK, Gabrielian A, Hurt D, Rosenthal A, Thoma G. Detecting drug-resistant tuberculosis in chest radiographs. Int J Comput Assist Radiol Surg. 2018 Dec;13(12):1915-1925. doi: 10.1007/s11548-018-1857-9. Epub 2018 Oct 3.