You are here

Show:
Printer-friendly versionPrinter-friendly version
  • Abhyankar S, Demner-Fushman D, Callaghan FM, McDonald CJ. Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis. J Am Med Inform Assoc. 2014 Sep-Oct;21(5):801-7. doi: 10.1136/amiajnl-2013-001915. Epub 2014 Jan 2.
  • Abhyankar S, Demner-Fushman D. A simple method to extract key maternal data from neonatal clinical notes. AMIA Annu Symp Proc. 2013 Nov 16;2013:2-9. eCollection 2013.
  • Abhyankar S, Leishear K, Callaghan FM, Demner-Fushman D, McDonald CJ. Lower short- and long-term mortality associated with overweight and obesity in a large cohort study of adult intensive care unit patients. Crit Care. 2012 Dec 18;16(6):R235. doi: 10.1186/cc11903.
  • Abhyankar S, Demner-Fushman D, Callaghan F, Leishear K, McDonald CJ. MIMIC-II: a database of 30,000+ patients for ICU research. NIH Intramural Research Festival, Bethesda MD, October 9-12, 2012.
  • Abhyankar S, Demner-Fushman D, McDonald CJ. Standardizing clinical laboratory data for secondary use. J Biomed Inform. 2012 Aug;45(4):642-50. doi: 10.1016/j.jbi.2012.04.012. Epub 2012 May 3.
  • Abhyankar S, Callaghan FM, Demner-Fushman D, McDonald CJ. Using informatics tools to study obesity and outcomes after critical illness. NLM Informatics Training Conference 2011, National Institutes of Health (NIH) Campus, Natcher Conference Center, Bethesda, MD, June 28-30, 2011.
  • Adamusiak T, Bodenreider O. Quality assurance in LOINC using Description Logic. AMIA Annu Symp Proc. 2012;2012:1099-108. Epub 2012 Nov 3.
  • Ahlers C, Fiszman M, Demner-Fushman D, Lang F, Rindflesch TC. Extracting Semantic Predications from MEDLINE Citations for Pharmacogenomics Pacific Symposium on Biocomputing 2007 12:209-220
  • Allam A, Magy M, Thoma G, Krauthammer M. Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Sci Rep. 2019 Jun 26;9(1):9277. doi: 10.1038/s41598-019-45685-z.
  • Almubarak H, Guo P, Stanley RJ, Long LR, Antani SK, Thoma GR. Algorithm Enhancements for Improvement of Localized Classification of Uterine Cervical Cancer Digital Histology Images. in Handbook of Research on Emerging Perspectives on Healthcare Information Systems and Informatics,. IGI Global (Hershey, PA).
  • Almubarak HA, Stanley RJ, Long LR, Antani SK, Thoma GR, Zuna R, Frazier SR. Convolutional Neural Network Based Localized Classification of Uterine Cervical Cancer Digital Histology Images. Procedia Computer Science, Volume 114, 2017, Pages 281-287, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2017.09.044.
  • Alzamzmi GA, Hsu L, Li W, Sachdev V, Antani SK. Echo Doppler Flow Classification and Goodness Assessment with Convolutional Neural Networks. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 1744-1749, doi: 10.1109/ICMLA.2019.00283
  • Alzamzmi GA, Hsu L, Li W, Sachdev V, Antani SK. Fully automated spectral envelope and peak velocity detection from Doppler echocardiography images. Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 113144G (16 March 2020); https://doi.org/10.1117/12.2551183
  • Alzamzmi GA, Hsu L, Li W, Sachdev V, Antani SK. Harnessing Machine Intelligence in Automatic Echocardiogram Analysis: Current Status, Limitations, and Future Directions. IEEE Reviews in Biomedical Engineering, doi: 10.1109/RBME.2020.2988295
  • Alzamzmi GA, Rajaraman S, Antani SK. Accelerating Super-Resolution and Visual Task Analysis in Medical Images. Appl. Sci. 2020, 10, 4282.
  • Alzamzmi GA, Rajaraman S, Antani SK. Unified Representation Learning for Efficient Medical Image Analysis 2020, [Online]
  • Amini S, Kilicoglu H, Hooft L, ter Riet G. Are we expressing uncertainty of our claims enough? Towards automatic detection of overstatement of claims [Poster]. 2015. World Conference on Research Integrity (WCRI).
  • An L, Obradovic Z, Smith D, Bodenreider O, Megalooikonomou V. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps. Workshop proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM09) -- Workshop on Data Mining in Functional Genomics 2009: p. 254-259
  • Antani S, Xue Z, Long LR, Bennett D, Ward S, Thoma GR. Is there a need for biomedical CBIR systems in clinical practice? Outcomes from a usability study. Proceedings of SPIE Medical Imaging 2011: Advanced PACS-based Imaging Informatics and Therapeutic Applications. Orlando, FL. February 2011;7967:796708.
  • Antani S, Long LR, Thoma GR. Bridging the Gap: Enabling CBIR in Medical Applications Proc IEEE CBMS. Jyvaskyla, Finland. June 2008:4-6
  • Antani S, Cheng J, Long J, Long LR, Thoma GR. Medical Validation and CBIR of Spine X-ray Images over the Internet Proc IS and T/SPIE Electronic Imaging Science and Technology 2006: Internet Imaging VII. San Jose. CA Jan 15-19, 2006, SPIE Vol. 6061 pp. 60610J (1-9).
  • Antani S, Long R, Thoma GR. Content-Based Image Retrieval for Large Biomedical Image Archives Medinfo. 2004 Sept.;2004: 829-833.
  • Antani S, Xu X, Long R, Thoma G. Partial Shape Matching for CBIR of Spine X-Ray Images Proc. SPIE Electronic Imaging - Storage and Retrieval Methods and Applications for Multimedia. 2004 Jan; 5307: 1-8.
  • Antani S, Long LR, Thoma GR. A Biomedical Information System for Combined Content-Based Retrieval of Spine X-ray Images and Associated Text Information 3rd Indian Conference on Computer Vision, Graphics, and Image Processing. 2002 Dec.
  • Antani S, Kasturi R, Jain R. A Survey on the Use of Pattern Recognition Methods for Abstraction Indexing and Retrieval of Images and Video Pattern Recognition Journal. 2002;35(4): 945-965.

Pages