You are here

  • Ganesan P, Rajaraman S, Long LR, Ghoraani B, Antani SK. Assessment of Data Augmentation Strategies Toward Performance Improvement of Abnormality Classification in Chest Radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 841 – 844.
  • Ganesan P, Xue Z, Singh S, Long LR, Ghoraani B, Antani SK. Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 4487 – 4490.
  • Rajaraman S, Sornapudi S, Kohli M, Antani SK. Assessment of an ensemble of machine learning models toward abnormality detection in chest radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 3689 – 3692.
  • Kim J, Tran L, Chew E, Antani SK. Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning 2019 IEEE 32th International Symposium on Computer-Based Medical Systems (CBMS), pp 489-494, Cordoba, Spain, June 2019.
  • Kim J, Tran L, Chew E, Antani SK, Thoma GR. Optic Disc Segmentation in Fundus Images Using Deep Learning. SPIE Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, Vol. 10954, San Diego, USA, February 2019.
  • Rajaraman S, Candemir S, Thoma G, Antani SK. Visualizing and explaining deep learning predictions for pneumonia detection in pediatric chest radiographs. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109500S (13 March 2019); doi: 10.1117/12.2512752.
  • Candemir S, Rajaraman S, Thoma GR, Antani SK. Deep Learning for Grading Cardiomegaly Severity in Chest X-rays: An Investigation. Proc. IEEE Life Sciences Conference (LSC 2018), Montreal, Quebec, Canada, 28 – 30 October 2018. pp. 109-113.
  • Moallem G, Sari-Sarraf H, Poostchi Mohammadabadi M, Maude R, Silamut K, Antani SK, Jaeger S. Detecting and segmenting overlapping red blood cells in microscopic images of thin blood smears. SPIE Medical Imaging, 2018.
  • Ben Abacha A, Gayen S, Lau JJ, Rajaraman S, Demner-Fushman D. NLM at ImageCLEF 2018 Visual Question Answering in the Medical Domain. CLEF2018 Working Notes. CEUR Workshop Proceedings, Avignon, France, CEUR-WS.org (September 10-14 2018).
  • Rajaraman S, Candemir S, Xue Z, Alderson P, Kohli M, Abuya J, Thoma GR, Antani SK. A novel stacked generalization of models for improved TB detection in chest radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC 2018), Honolulu, Hawaii, 2018. pp. 718-721.
  • Xue Z, Long LR, Jaeger S, Folio L, Thoma GR. Extraction of Aortic Knuckle Contour in Chest Radiographs Using Deep Learning. EMBC 2018.
  • Xue Z, Rajaraman S, Long LR, Antani SK, Thoma GR. Gender Detection from Spine X-ray Images Using Deep Learning. Proc. IEEE International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018. pp. 54-58, DOI:10.1109/CBMS.2018.00017.
  • Kim J, Candemir S, Chew E, Thoma GR. Region of Interest Detection in Fundus Images Using Deep Learning and Blood Vessel Information. The 31th IEEE International Symposium on Computer-Based Medical Systems. (IEEE CBMS 2018), pp. 357-362, Karlstad, Sweden, June 2018.
  • Edinger T, Demner-Fushman D, Cohen AM, Bedrick S, Hersh W. Evaluation of Clinical Text Segmentation to Facilitate Cohort Retrieval. AMIA Annu Symp Proc. 2018 Apr 16;2017:660-669. eCollection 2017.
  • Fung K, Xue Z, Ameye F, Gutierrez AR, D'Have A. Achieving Logical Equivalence between SNOMED CT and ICD-10-PCS Surgical Procedures. AMIA Annu Symp Proc. 2018 Apr 16;2017:724-733. eCollection 2017.
  • Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio L, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790U (6 March 2018) pp. doi: 10.1117/12.2293022
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790D (6 March 2018) pp. doi: 10.1117/12.2293027.
  • Zohora FT, Antani SK, Santosh KC. Circle-like foreign element detection in chest x-rays using normalized cross-correlation and unsupervised clustering. Proc. SPIE 10574, Medical Imaging 2018: Image Processing, 105741V (2 March 2018); doi: 10.1117/12.2293739; doi.org/10.1117/12.2293739.
  • Rajaraman S, Antani SK, Candemir S, Xue Z, Abuya J, Kohli M, Alderson P, Thoma GR. Comparing deep learning models for population screening using chest radiography. Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751E (27 February 2018).
  • Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio LR, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. SPIE Medical Imaging 2018
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. SPIE Medical Imaging 2018
  • Bryant B, Sari-Sarraf H, Long LR, Antani SK. A Kernel Support Vector Machine Trained Using Approximate Global and Exhaustive Local Sampling. Proceedings of the 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT) 2017, Austin, Texas, USA, December 2017. Pp. 267-8 DOI: https://doi.org/10.1145/3148055.3149206
  • de Herrera G, Long LR, Antani SK. Graph Representation for Content–based fMRI Activation Map Retrieval. Proceedings of 1st Life Sciences Conference, Sydney, Australia, December 2017 pp. 129-32 DOI: https://doi.org/10.1109/LSC.2017.8268160.
  • Rajaraman S, Antani SK, Xue Z, Candemir S, Jaeger S, Thoma GR. Visualizing abnormalities in chest radiographs through salient network activations in Deep Learning. Proc. IEEE Life Sciences Conference (LSC), Sydney, Australia, 2017. pp. 71-74, DOI:10.1109/LSC.2017.8268146.
  • Abhyankar S, Schluter P, Bennett K, Vreeman D, McDonald CJ. Enabling Interoperability between Healthcare Devices and EHR Systems. In 2017 AMIA Symposium. Wasington DC: IEEE.
  • McDonald CJ, Vreeman D, Wang K, Carr C, Colins B, Abhyankar S, Deckard J, Rubin D, Langlotz C. The LOINC/RSNA Radiology Playbook: A unified terminology for radiology procedures. . In 2017 AMIA Symposium. Washington DC.
  • Almubarak HA, Stanley RJ, Long LR, Antani SK, Thoma GR, Zuna R, Frazier SR. Convolutional Neural Network Based Localized Classification of Uterine Cervical Cancer Digital Histology Images. Procedia Computer Science, Volume 114, 2017, Pages 281-287, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2017.09.044.
  • Kury F, Baik SH, McDonald CJ. Cardioprotective Drugs and Incident Dementias in Medicare's Big Data. AMIA 2017.
  • Ekong DU, Fontelo P. Prototype telepathology solutions that use the Raspberry Pi and mobile devices. 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose CA, 2017: 1-4.
  • Fung K, Gutierrez A, Ameye F, D’Have A, Ariel B. Demonstrating the Benefits of Mapping SNOMED CT to ICD-10-PCS through a Prototype Application for End User Implementation. SNOMED Expo Oct 2017, Bratislava, Slovakia pp. 0
  • Guan Y, Li M, Jaeger S, Lure F, Raptopoulos V, Lu P, Folio LR, Candemir S, Antani SK, Siegelman J, Li J, Wu T, Thoma GR, Qu S. Applying Artificial Intelligence and Radiomics for Computer Aided Diagnosis and Risk Assessment in Chest Radiographs. 2nd Conference on Machine Intelligence in Medical Imaging (CMIMI) of the Society for Imaging Informatics in Medicine (SIIM), Poster, 2017.
  • Raje S, Bodenreider O. Interoperability of disease concepts in clinical and research ontologies – Contrasting coverage and structure in the Disease Ontology and SNOMED CT. Stud Health Technol Inform. 2017;245:925-929.
  • Rajaraman S, Antani SK, Jaeger S. Visualizing Deep Learning Activations for Improved Malaria Cell Classification. Proceedings of The First Workshop in Medical Informatics and Healthcare (MIH 2017), Proceedings of Machine Learning Research (PMLR), v. 69, p. 40-47.
  • Candemir S, Antani SK, Xue Z, Thoma GR. Novel Method for Storyboarding Biomedical Videos for Medical Informatics. 30th IEEE International Symposium on Computer-Based Medical Systems
  • Raje S, Bodenreider O. Investigating the coverage of diseases across biomedical research and clinical ontologies. Proceedings of the AMIA Joint Summits on Translational Science CRI: 384-385.
  • Ding M, Antani SK, Jaeger S, Xue Z, Candemir S, Kohli M, Thoma GR. Local-Global Classifier Fusion for Screening Chest Radiographs. Proc. SPIE 10138, Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, 101380A (March 13, 2017); doi:10.1117/12.2252459
  • Xue Z, Antani SK, Long LR, Thoma GR. Automatic multi-label annotation of abdominal CT images using CBIR. Proc. SPIE 10138, Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, 1013807 (March 13, 2017); doi:10.1117/12.2254368.
  • Bahr NJ, Nelson SD, Winnenburg R, Bodenreider O. Eliciting the Intension of Drug Value Sets - Principles and Quality Assurance Applications. Stud Health Technol Inform. 2017;245:843-847.
  • Dhombres F, Bodenreider O. Trends in Fetal Medicine: A 10-Year Bibliometric Analysis of Prenatal Diagnosis. Stud Health Technol Inform. 2017;245:853-857.
  • Nelsonn SD, Parker J, Lario R, Winnenburg R, Erlbaum MS, Lincoln MJ, Bodenreider O. Interoperability of medication classification systems: Lessons learned mapping estab-lished pharmacologic classes (EPCs) to SNOMED CT. Stud Health Technol Inform. 2017;245:920-924.
  • Yu Z, Nguyen T, Dhombres F, Johnson T, Bodenreider O. "Hybrid Topics" - Facilitating the Interpretation of Topics Through the Addition of MeSH Descriptors to Bags of Words. Stud Health Technol Inform. 2017;245:662-666.
  • De Herrera A, Long LR, Antani SK. Content-Based fMRI Brain Maps Retrieval. International Conference on Brain and Health Informatics, Omaha, NE, USA, October 13-16, 2016.
  • Ben Abacha A. NLM_NIH at TREC 2016 Clinical Decision Support Track. Proceedings of TREC 2016, the 25th Text Retrieval Conference, Gaithersburg, MD, USA, November 2016.
  • Ben Abacha A, de Herrera A, Wang Ke, Long LR, Antani SK, Demner-Fushman D. Named entity recognition in functional neuroimaging literature. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, 2017, pp. 2218-2220.
  • Liang Z, Powell A, Ersoy I, Poostchi M, Silamut K, Palaniappan K, Guo P, Hossain M, Antani SK, Maude R, Huang J, Jaeger S, Thoma GR. CNN-Based Image Analysis for Malaria Diagnosis. IEEE International Conference on Bioinformatics & Biomedicine (BIBM), Shenzhen, China, 2016.
  • Madani S, Henderson J, Fung K. Development of an oncology subset of SNOMED CT based on patient notes. AMIA Annu Symp Proc 2016: 91-92.
  • Kochmann M, Locatis CN. Telemedicine in the Apple App Store: An exploratory study of teledermatology apps. In Smari, W. & Natarian, J. (Eds.), Proc 2016 Int Conf Collaboration Technologies and Systems, Orlando, Florida, October 31-November 4, Institute for Electrical and Electronic Engineers & Association for Computing Machinery, 534-537.
  • Marchell R, Locatis CN, Ackerman MA. High definition live interactive and store and forward teledermatology: A comparison of concordance, confidence, and satisfaction with in-person exams. In Smari, W. & Natarian, J. (Eds.), Proceedings of the 2016 International Conference on Collaboration Technologies and Systems, Orlando, Florida, October 31. Institute for Electrical and Electronic Engineers & Association for Computing Machinery, 520-523.
  • Mrabet Y, Vougiouklis P, Kilicoglu H, Gardent C, Demner-Fushman D, Hare J, Simperl E. Aligning Texts and Knowledge Bases with Semantic Sentence Simplification. WebNLG 2016.
  • Boyce RD, Voss EA, Huser V, Evans L, Reich C, Duke JD, Tatonetti NP, Lorberbaum T, Dumontier M, Hauben M, Wallberg M. LAERTES: An open scalable architecture for linking pharmacovigilance evidence sources with clinical data. Proc International Conference on Biomedical Ontology and BioCreative (ICBO BioCreative 2016). http://icbo2016.cgrb.oregonstate.edu/node/354.

Pages