You are here

  • Yang F, Quizon N, Silamut K, Maude RJ, Jaeger S, Antani SK. Cascading YOLO: Automated Malaria Parasite Detection for Plasmodium Vivax in Thin Blood Smears. To be presented at SPIE Medical Imaging, Feb.18-20, 2020, Houston, USA.
  • Goodwin T, Demner-Fushman D. Deep Learning from Incomplete Data: Detecting Imminent Risk of Hospital-acquired Pneumonia in ICU Patients. Proceedings of the AMIA 2019 Annual Symposium, Washington, DC, USA, November 17-20, 2019.
  • Yu H, Yang F, Silamut R, Maude S, Jaeger S, Antani SK. Automatic Blood Smear Analysis with Artificial Intelligence and Smartphones. ASTMH 68th Annual Meeting, Washington DC, Nov. 20-24, 2019.
  • Savery M, Huston M, Mork JG, Printseva O, Rae A, Schmidt S, Demner-Fushman D. Evaluation of System for Selective Indexing Classification. AMIA Fall Symposium, 2019.
  • Lure F, Jaeger S, Cheng G, Li H, Lu P, Yu W, Kung J, Guan Y. Applying Multi-modality Artificial Intelligence for Screening of Tuberculosis in a TB High-burden Large Rural Region in China TBScience, 50th Union World Conference on Lung Health, Hyderabad, India.
  • Yang F, Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Automated Parasite Classification of Malaria on Thick Blood Smears. ASTMH 67th Annual Meeting, New Orleans, LA, Oct. 28 – Nov. 1, 2018.
  • Yang F, Yu H, Silamut K, Maude RJ, Jaeger S, Antani SK. Parasite Detection in Thick Blood Smears Based on Customized Faster-RCNN. Proceedings of AIPR2019, Washington DC, USA, Oct 15-17, 2019.
  • Yang F, Yu H, Silamut K, Maude R, Jaeger S, Antani SK. Smartphone-Supported Malaria Diagnosis Based on Deep Learning. Proceedings of 10th Workshop on Machine Learning in Medical Imaging (MLMI 2019) in conjunction with MICCAI, Shenzhen, China, Oct 13-17, 2019.
  • Yang F, Yu H, Silamut K, Maude RJ, Jaeger S, Antani SK. Smartphone-Supported Malaria Diagnosis Based on Deep Learning. In: Suk HI., Liu M., Yan P., Lian C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science, vol 11861. Springer, Cham.
  • Rajaraman S, Candemir S, Xue Z, Alderson P, Thoma G, Antani SK. A Novel Stacked Model Ensemble for Improved TB Detection in Chest Radiographs. In Santosh KC et al. (Eds.). Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. (pp. 1-26). New York, NY: CRC Press, Taylor & Francis Group.
  • Divita G, Rosemblat G, Browne AC. Building a medical Spanish lexicon. AMIA Annu Symp Proc. 2007 Oct 11:941.
  • Ganesan P, Rajaraman S, Long LR, Ghoraani B, Antani SK. Assessment of Data Augmentation Strategies Toward Performance Improvement of Abnormality Classification in Chest Radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 841 – 844.
  • Ganesan P, Xue Z, Singh S, Long LR, Ghoraani B, Antani SK. Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 4487 – 4490.
  • Rajaraman S, Sornapudi S, Kohli M, Antani SK. Assessment of an ensemble of machine learning models toward abnormality detection in chest radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany, 23 – 27 July 2019. pp. 3689 – 3692.
  • Kim J, Tran L, Chew E, Antani SK. Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning 2019 IEEE 32th International Symposium on Computer-Based Medical Systems (CBMS), pp 489-494, Cordoba, Spain, June 2019.
  • Kesav N, Yang Q, Losert W, Kim J, Jaeger S, Sen HN. Novel automated processing techniques of fluorescein angiography (FA) images in patients with Uveitis. Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO).
  • Ionescu B, Muller H, Peteri R, Dang-Nguyen DT, Piras L, Riegler M, Tran MT, Lux M, Gurrin C, Cid YD, Liauchuk V, Kovalev V, Ben Abacha A, Hasan SA, Datla V, Liu J, Demner-Fushman D, Pelka O, Friedrich CM, Chamberlain J, Clark C, de Herrera AGS, Garcia N, Kavallieratou E, del Blanco CR, Rodriguez CC, Vasillopoulos N, Karampidis K. Multimedia retrieval in medicine, lifelogging, security and nature. International Conference of the Cross-Language Evaluation Forum for European Languages, Springer, Cham, 358-386, 2019
  • Guo P, Singh S, Xue Z, Long LR, Antani SK. Deep Learning for Assessing Image Focus for Automated Cervical Cancer Screening. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) DOI: 10.1109/BHI.2019.8834495.
  • Kim J, Tran L, Chew E, Antani SK, Thoma GR. Optic Disc Segmentation in Fundus Images Using Deep Learning. SPIE Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, Vol. 10954, San Diego, USA, February 2019.
  • Rajaraman S, Candemir S, Thoma G, Antani SK. Visualizing and explaining deep learning predictions for pneumonia detection in pediatric chest radiographs. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109500S (13 March 2019); doi: 10.1117/12.2512752.
  • Ben Abacha A, Demner-Fushman D. On the role of question summarization and information source restriction in consumer health question answering. In Proceedings of the AMIA 2019 Informatics Summit, San Francisco, CA, USA, 2019.
  • Demner-Fushman D, Fung K, Do P, Boyce R, Goodwin T. Overview of the TAC 2018 Drug-Drug Interaction Extraction from Drug Labels Track. Proceedings of the Text Analysis Conference (TAC) 2018, Gaithersburg, MD, USA, November 13-14, 2018.
  • Lu C, Demner-Fushman D. Improving Spelling Correction with Consumer Health Terminology Improving Spelling Correction with Consumer Health Terminology AMIA 2018 Annual Symposium, San Francisco, CA, November 3-7, 2018, p. 2053.
  • Candemir S, Rajaraman S, Thoma GR, Antani SK. Deep Learning for Grading Cardiomegaly Severity in Chest X-rays: An Investigation. Proc. IEEE Life Sciences Conference (LSC 2018), Montreal, Quebec, Canada, 28 – 30 October 2018. pp. 109-113.
  • Ben Abacha A, Gayen S, Lau JJ, Rajaraman S, Demner-Fushman D. NLM at ImageCLEF 2018 Visual Question Answering in the Medical Domain. CLEF2018 Working Notes. CEUR Workshop Proceedings, Avignon, France, CEUR-WS.org (September 10-14 2018).
  • Yang F, Yu H, Poostchi M, Silamut K, Maude RJ, Jaeger S. Smartphone-Supported Automated Malaria Parasite Detection. SIIM conference on Machine Intelligence in Medical Imaging, 2018.
  • McDonald CJ, Maglott D, Abhyankar S, Goodwin RM, Kanduru A, Lu S, Lynch P, Vreeman D, Wang Y, Wood G. US Realm, Chapter 14, Use Case – Clinical Genomics Code Systems. in HL7 Version 2.5.1 Implementation Guide: Lab Results Interface (LRI), DTSU3. HL7 International (Ann Arbor).
  • McDonald CJ, Maglott D, Abhyankar S, Goodwin RM, Kanduru A, Lu S, Lynch P, Vreeman D, Wang Y, Wood G. US Realm, Chapter 5, Use Case – Clinical Genomics Results Reporting in HL7 Version 2.5.1 Implementation Guide: Lab Results Interface (LRI), DTSU3. HL7 International (Ann Arbor).
  • Rajaraman S, Candemir S, Xue Z, Alderson P, Kohli M, Abuya J, Thoma GR, Antani SK. A novel stacked generalization of models for improved TB detection in chest radiographs. Proc. IEEE Engineering in Medicine and Biology Conference (EMBC 2018), Honolulu, Hawaii, 2018. pp. 718-721.
  • Xue Z, Long LR, Jaeger S, Folio L, Thoma GR. Extraction of Aortic Knuckle Contour in Chest Radiographs Using Deep Learning. EMBC 2018.
  • Xue Z, Rajaraman S, Long LR, Antani SK, Thoma GR. Gender Detection from Spine X-ray Images Using Deep Learning. Proc. IEEE International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018. pp. 54-58, DOI:10.1109/CBMS.2018.00017.
  • Kim J, Candemir S, Chew E, Thoma GR. Region of Interest Detection in Fundus Images Using Deep Learning and Blood Vessel Information. The 31th IEEE International Symposium on Computer-Based Medical Systems. (IEEE CBMS 2018), pp. 357-362, Karlstad, Sweden, June 2018.
  • McDonald CJ. Logical Observation Identifiers Names and Codes for In Vitro Diagnostic Test; Guidance for Industry and Food and Drug Administration Staff. Silver Spring, Md: Center for Devices and Radiological Health, FDA, 2018.
  • Edinger T, Demner-Fushman D, Cohen AM, Bedrick S, Hersh W. Evaluation of Clinical Text Segmentation to Facilitate Cohort Retrieval. AMIA Annu Symp Proc. 2018 Apr 16;2017:660-669. eCollection 2017.
  • Fung K, Xue Z, Ameye F, Gutierrez AR, D'Have A. Achieving Logical Equivalence between SNOMED CT and ICD-10-PCS Surgical Procedures. AMIA Annu Symp Proc. 2018 Apr 16;2017:724-733. eCollection 2017.
  • Kayaalp M. Modes of De-identification. AMIA Annu Symp Proc. 2018 Apr 16;2017:1044-1050. eCollection 2017.
  • Rodriguez L, Morrison SM, Greenberg K, Demner-Fushman D. Mining the literature for genes associated with placenta-mediated maternal diseases. AMIA Annu Symp Proc. 2018 Apr 16;2017:1498-1506. eCollection 2017.
  • Moallem G, Sari-Sarraf H, Poostchi M, Maude RJ, Silamut K, Hossain MA, Antani SK, Jaeger S, Thoma G. Detecting and segmenting overlapping red blood cells in microscopic images of thin blood smears. Proc. SPIE 10581, Medical Imaging 2018:Digital Pathology, 105811F (6 March 2018); doi: 10.1117/12.2293762.
  • Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio L, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790U (6 March 2018) pp. doi: 10.1117/12.2293022
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790D (6 March 2018) pp. doi: 10.1117/12.2293027.
  • Zohora FT, Antani SK, Santosh KC. Circle-like foreign element detection in chest x-rays using normalized cross-correlation and unsupervised clustering. Proc. SPIE 10574, Medical Imaging 2018: Image Processing, 105741V (2 March 2018); doi: 10.1117/12.2293739; doi.org/10.1117/12.2293739.
  • Almubarak H, Guo P, Stanley RJ, Long LR, Antani SK, Thoma GR. Algorithm Enhancements for Improvement of Localized Classification of Uterine Cervical Cancer Digital Histology Images. in Handbook of Research on Emerging Perspectives on Healthcare Information Systems and Informatics,. IGI Global (Hershey, PA).
  • Tang P, McDonald CJ. Computer-Based Patient-Record Systems - Chapter 9. In Shortliffe E, Perreault L, eds. Medical Informatics. New York: springer. 2001:327-358. DOI: 10.1007/978-0-387-21721-5_9.
  • Rajaraman S, Antani SK, Candemir S, Xue Z, Abuya J, Kohli M, Alderson P, Thoma GR. Comparing deep learning models for population screening using chest radiography. Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751E (27 February 2018).
  • Thamizhvani TR, Lakshmanan S, Rajaraman S. Computer Aided Diagnosis of Skin Tumours from Dermal Images. Hemanth D., Smys S. (eds) Computational Vision and Bio Inspired Computing. Lecture Notes in Computational Vision and Biomechanics, vol 28. Springer, Cham
  • Xue Z, Jaeger S, Antani SK, Long LR, Karargyris A, Siegelman J, Folio LR, Thoma GR. Localizing tuberculosis in chest radiographs with deep learning. SPIE Medical Imaging 2018
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. SPIE Medical Imaging 2018
  • Zweigenbaum P, Demner-Fushman D. Advanced Literature-Mining Tools. In Edwards D, Stajich J, and Hansen D. (Editors). Bioinformatics: Tools and Applications. Springer 2009.
  • Bryant B, Sari-Sarraf H, Long LR, Antani SK. A Kernel Support Vector Machine Trained Using Approximate Global and Exhaustive Local Sampling. Proceedings of the 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT) 2017, Austin, Texas, USA, December 2017. Pp. 267-8 DOI: https://doi.org/10.1145/3148055.3149206
  • de Herrera G, Long LR, Antani SK. Graph Representation for Content–based fMRI Activation Map Retrieval. Proceedings of 1st Life Sciences Conference, Sydney, Australia, December 2017 pp. 129-32 DOI: https://doi.org/10.1109/LSC.2017.8268160.

Pages