You are here

  • Yoo TS, Hamilton T, Hurt D, Caban J, Liao D, Chen D. Toward Quantitative X-Ray CT Phantoms of Metastatic Tumors Using Rapid Prototyping Technology. In: Pan X, Liebling M, editors. Proceedings of ISBI 2011: IEEE Computer Society International Symposium on Biomedical Imaging: From Nano to Macro; 2011 Mar 30-Apr 2; Chicago. p. 1770-3. DOI: 10.1109/ISBI.2011.5872749.
  • Yoo TS. Toward Validation Databases for Medical Imaging: Engineering a Scientific Rendezvous. In: Proceedings of International Symposium on Information Retrieval and Exploration in Large Medical Image Collections (VISIM 2001); 2001 Oct 14-17; Utrecht, The Netherlands. p. 7-10.
  • Long LR, Thoma GR. Use of Shape Models to Search Digitized Spine X-Rays IEEE Computer-Based Medical Systems. 2000 June;: 255-60.
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. Proc SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790D (6 March 2018) pp. doi: 10.1117/12.2293027.
  • Xue Z, Antani SK, Long LR, Thoma GR. Using deep learning for detecting gender in adult chest radiographs. SPIE Medical Imaging 2018
  • Fontelo P, DiNino E, Johansen K, Khan A, Ackerman MJ. Virtual Microscopy: Potential Applications in Medical Education and Telemedicine in Countries with Developing Economies. Proceedings of the 38th Hawaii International Conference on System Sciences; 2005 Jan 3-6; Big Island, Hawaii: 7 pages. IEEE Computer Society.
  • Ratiu P, Hillen B, Glaser J, Jenkins DB. Visible Human 2.0 - The Next Generation. In: Westwood JD, Hoffman HM, Mogel GT, Phillips R, Robb RA, Stredney D, editors. Stud Health Technol Inform [Studies in Health Technology and Informatics] -- Proceedings of the 11th annual Medicine Meets Virtual Reality conference; 2003 Jan;94:275-81. Amsterdam: IOS Press.
  • Ackerman MJ. Visible Human Project. McGraw-Hill 2004 Yearbook of Science & Technology. New York: McGraw-Hill. 2004. p. 369-72.
  • Ackerman MJ. Visible Human Project: From Data to Knowledge. In: Haux R, Kulikowski C, editors. Yearbook of Medical Informatics 2002: Medical Imaging Informatics. International Medical Informatics Association (IMIA). p. 115-7.
  • Rajaraman S, Antani SK, Xue Z, Candemir S, Jaeger S, Thoma GR. Visualizing abnormalities in chest radiographs through salient network activations in Deep Learning. Proc. IEEE Life Sciences Conference (LSC), Sydney, Australia, 2017. pp. 71-74, DOI:10.1109/LSC.2017.8268146.
  • Rajaraman S, Candemir S, Thoma G, Antani SK. Visualizing and explaining deep learning predictions for pneumonia detection in pediatric chest radiographs. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109500S (13 March 2019); doi: 10.1117/12.2512752.
  • Rajaraman S, Antani SK, Jaeger S. Visualizing Deep Learning Activations for Improved Malaria Cell Classification. Proceedings of The First Workshop in Medical Informatics and Healthcare (MIH 2017), Proceedings of Machine Learning Research (PMLR), v. 69, p. 40-47.
  • Xue Z, Antani S, Long LR, Thoma GR. Web-accessible Cervigram Automatic Segmentation Tool SPIE Medical Imaging Conference. March 2010;7628
  • Zhu Y, Huang X, Lopresti D, Long R et al. Web-based Multi-observer Segmentation Evaluation Tool Proc. 21st IEEE CBMS. Jyvaskyla, Finland. June 2008:167-9
  • Xue Z, Antani SK, Long LR, Demner-Fushman D, Thoma GR. Window classification of brain CT images in biomedical articles. AMIA Annu Symp Proc. 2012;2012:1023-9. Epub 2012 Nov 3.

Pages