
A Novel Computational Intelligence-based Approach for Medical Image

Artifacts Detection

Beibei Cheng
a
, R. Joe Stanley

a
, Sameer Antani

b
, George R. Thoma

b

a
Department of Electrical and Computer Engineering

Missouri University of Science and Technology

Rolla, MO 65409-0040
b
Lister Hill National Center for Biomedical Communications

National Library of Medicine, National Institutes of Health, DHHS

Bethesda, MD 20894, USA

bcx93@mst.edu, stanleyj@mst.edu, santani@mail.nih.gov, gthoma@mail.nih.gov

Abstract

In this research, a novel computational intelligence-

based algorithm to detect artifacts, specifically arrows, in

medical images is presented. Image analyses techniques

are developed to find the symbols and text automatically.

Features are computed from the shape of arrow for the

discrimination of arrows from other artifacts. We

investigate a biologically-inspired reinforcement learning

(RL) approach in an adaptive critic design (ACD)

framework to apply Action Dependent Heuristic Dynamic

Programming (ADHDP) for arrow discrimination based

on the computed features. Experimental results for

ADHDP are compared with feed forward multi-layer

perception (MLP) back-propagation artificial neural

networks (BP-ANN), particle swarm optimization (PSO)

for training of a MLP neural network, genetic algorithm

(GA) for training of a MLP neural network, k-nearest

neighbor (KNN), and support vector machine (SVM).

1. Introduction

The detection of medical image artifacts such as

arrows is important to highlighting supplemental and

context-based information which may be helpful in

understanding medical images. It is necessary to have an

accurate algorithm in discriminating arrows from other

characters and symbols. There are several methodologies

that have been implemented to find arrows in previous

research. Laurent Wendling and Salvatore Tabbone [1]

proposed a method in recognizing arrows based on the

aggregation of geometric criteria using the choquet

interal; J.E. den Hartogtz and T.K. ten Katet [2] gave a

solution of finding arrows in utility maps using a neural

network; Jongan Park, Waqas Rasheed, and Junguk Beak

[3] proposed a way of identifying arrow signs for Robot

Navigation using a camera-based method.

Extending techniques from previous research, the

arrow symbols present in the medical images in our

experimental data set have variety in shape and size.

Arrows do not necessarily have to be straight (arrow 3,

arrow 4) and the shape of the arrows can change (arrow 2)

as you can see in Figure 1(a). Furthermore, a noise

example can include characters and symbols, which may

be of similar size to arrows as shown in Figure 1 (b).

Therefore, a general and robust arrow detection algorithm

is needed for discrimination from other medical image

artifacts.

 (a) (b)

Figure 1. Medical image examples.

(a) Arrow image example. (b) Noise image example.

Since both text and symbol objects are white or black,

they can be segmented by some image analysis

techniques. After generating the binary image containing

only text-like and symbol-like objects, features sets are

used as input to classifiers. An overview of the algorithm

investigated is shown in Figure 2. This study uses 144

medical images annotated by modality (radiological,

photo, etc.) selected from 2004-2005 issues of the British

Journal of Oral and Maxillofacial Surgery, including 79

images with one or more arrows and 65 images with no

arrows. The image analysis techniques are follows:

1) Convert RGB images into gray images and inverted

gray images.

2) Use Otsu's method [4], which chooses the threshold

to minimize the intra-class variance of the black and

white pixels to convert gray images into binary

images.

mailto:bcx93@mst.edu
mailto:stanleyj@mst.edu
mailto:santani@mail.nih.gov
mailto:gthoma@mail.nih.gov

3) Remove objects that are considered small and objects

that are considered short.

4) Get the edge of object with gray drop. The value of

gray drop is 30. If the absolute value of center pixel

minus NW, N, NE, W, E, SW, S, SE is greater than

the gray drop, this pixel will be marked. (Figure 3)

5) Compare the edge image getting after step 4) with the

image getting after step 3), keep the objects with the

same bounding box size.

6) Or image result with inverted image result.

 Figure 4 presents an image example of the image

processing steps for the original image to generate the

binary mask for feature calculations.

Figure 2. Overview of arrow detection and

discrimination process.

1

c1 1

1 1

1 1

N

E

S

W

SW

1

SE

NENW

 Figure 3. Edge detection.

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

 (i) (j)

(k)

Figure 4: Image processing algorithm example. (a)

Original image. (b) Grey image. (c) Image by using

threshold. (d) Inverted image by using threshold. (e)

Image after noise removal. (f) Inverted image after

noise removal. (g) Image by using edge detection. (h)

Invert image by using edge detection. (i) Image by

comparing (e) to (g) with the bounding box size. (j)

Image by comparing (f) to (h) with the bounding box

size. (k) Final image by or (i) and (j).

Binary image with

text/symbol-like

objects

Feature

generation

Arrow/No-

arrow data

set

Classifier

Algorithms
Decision

result

Medical

images

Image

processing

technique

The remaining sections of this paper include: 1)

Feature Generation, 2) Adaptive Critic Designs

Methodology, 3) Other Classification Methodologies, 4)

Results and Discussion, 5) Acknowledgement, and 6)

Conclusions and Future Work.

2. Feature generation

After generating the binary image containing only text-

like and symbol-like objects by using above techniques,

certain features are selected that will help in the

identification of arrows from the rest of objects. This

selection process is very important, because the

identification stage depends heavily upon this process.

We select twenty-two features that will help us in

distinguishing the arrows. These characteristic features

and their explanations are shown as follows:

MajorAxisLength: length (in pixels) of the major axis of

the ellipse that has the same normalized second central

moments as the region.

MinorAxislength: length (in pixels) of the minor axis of

the ellipse that has the same normalized second central

moments as the region.

Axis Ratio: ratio of MajorAxisLength with

MinorAxislength.

Normalized area: area of the region divided by the whole

image.

Solidity: area of the region divided by the Convexhull

Area.

EulerNumber: equal to the number of objects in the

region minus the number of holes in those objects.

EquiDiam: the diameter of a circle with the same area as

the region.

Extent: ratio of area to bounding box area.

AvgSkelDist: average width of object.

MinPixelNo: for two line x=X and x=X+W (X is the top

left point of bounding box horizontal value; W is the

width of bounding box), the minimum number of pixels

of intersection for region and each line as shown in Figure

5.

x=X x=X+W x=X x=X+W

 (a) (b)

Figure 5: MinPixelNo feature.

(a)Arrow. (b) Noise.

Weighted Density Distribution features: other arrow

features are extracted by correlating the shape samples of

the arrow with weighted density distribution functions

(WDD) [5-6]. Let 𝐸 = {𝐸 𝑠1 , 𝐸 𝑠2 , … , 𝐸(𝑠𝑚)} be the

sequential of shape samples collected, where m is the

number of samples collected at a constant rate

and 𝐸(𝑠𝑖) ∈ 𝑅𝑛 , where1 ≤ 𝑖 ≤ 𝑚 . Figure 6 shows the

WDD functions used in the experiments. Twelve WDD-

based features are computed. Each of the WDD function

is decomposed into 12 discrete points for WDD feature

calculations. Let 𝑊1 denote the WDD function in figure

6(a), 𝑊2 denote the WDD function in figure 6(b) and so

on. The gray horizontal position marker for each WDD

function shown in figure 6 points to the reference position

for which WDD features is computed. The reference

position corresponds to the current sample s. Six WDD

features (𝑓1 𝑠 , … , 𝑓6 𝑠) corresponding to the

measurement at sample s are computed according to the

following expression

 𝑓𝑘 𝑠 = 𝐸 𝑖 𝑊𝑘
𝑠+1
𝑖=𝑠−10 (𝑖 − 𝑠 + 11) (1)

For 𝑘 = 1,2, … ,6. Six additional features

(𝑓7 𝑠 , … , 𝑓12 𝑠) are computed by correlating the six

WDD functions with the sequence of absolute differences

between samples value as follows

𝑓𝑘 𝑠 = |𝐸 𝑖 − 𝐸 𝑖 − 1 |𝑊𝑘
𝑠+1
𝑖=𝑠−10 (𝑖 − 𝑠 + 11) (2)

In this research, the shape samples of arrow are

computed in the following way: divide the height of the

bounding box of arrow by twenty and get line y= Y1

y=Y2…, y=Y20 . The 20 samples is the length of line y=Y1

to y=Y20 intersected with this arrow, as you can see in

figure 7, the red lines. After all, twelve WDD features

could be generated according to these samples.

Therefore, with the 144 medical images as the input,

after image processing and feature extraction, there are

154 arrow objects and 276 text/noise objects generated.

They are manually catalogued with class 1 (arrow objects)

and class 0 (other objects). To evaluate these features, the

attribute selection criteria are information gain [7] and

chi-square [8] by Weka®. Table 1 shows information gain

value and chi-square value for each feature.

(a) (b) (c)

(d) (e) (f)

Figure 6: The WDD functions used to compute

arrow features [6].

y=Y1

y=Y2

y=Y3

y=Y20

Figure 7: Samples for generating WDD features.

The orientation of each object can impact feature

generation. For example, the feature MinPixelNo is

supposed to be smaller for arrow objects than for others

because of the accurate point of arrow. But since the

various shapes and sizes of arrows, as can be seen in

Figure 8, this value can still be quite large. This arrow is

falsely identified as noise by the MLP backpropgation

neural network.

x=X x=X+W
Figure 8: Falsely identified arrow.

To improve the outcome, rotating the region is an

effective solution. Figure 9 shows the arrow image output

with different rotation values (0 degree, 15 degree, 30

degree, 45 degree, 60 degree, 75 degree, 90 degree).

Therefore, seven data sets will be generated after applying

feature extraction to these seven image sets.

Figure 9: Arrows with different rotation value.

An ACD-based arrow discrimination methodology is

then applied in the presence of these seven data sets. So

the decision of arrow/no-arrow is made by the global data

set but not the single data set. The input for the neural

network is the features generated from those seven

different orientations based on rotation.

 Table 1: Information gain and chi-square value.
Feature_Name Info_gain_value Chi_square_value

MajorAxisLength 0.5875 287.0769

MinorAxislength 0.1924 106.3261

Axis Ratio 0.4380 217.0534

Normalized area 0.5052 248.0459

Solidity 0.1038 58.169

eulerNumber 0.1587 73.3162

EquiDiam 0.5628 278.9818

Extent 0.2260 112.2445

AvgSkelDist 0.4566 230.6459

MinPixelNo 0.1555 75.0847

f1 0.1837 109.0502

f2 0.2504 141.9929

f3 0.2768 155.7666

f4 0.1658 95.7217

f5 0.0457 27.9648

f6 0.4004 213.7316

f7 0.3361 187.9629

f8 0.1205 71.3723

f9 0.1350 81.8844

f10 0.0538 32.9075

f11 0.1837 25.5232

f12 0.2768 159.0519

3. Adaptive critic design methodology

Reinforcement learning is the problem faced by an

agent that must learn behavior through trial-and-error

interactions with a dynamic environment. It is a

computational approach to learning whereby an agent

tries to maximize the total amount of reward it receives

when interacting with a complex, uncertain environment

[9]. The RL has been developed in various applications

such as neuro-computing [10], and multi-resolution object

recognition [11].

The Adaptive Critic Design provides a workstation for

implementing RL. An ACD approximates the neuro-

dynamic programming by using an action and a critic

network, respectively [12]. This model employs

reinforcement learning (RL) through direct neural

dynamic programming (Direct NDP) [13]. The term

“direct” is influenced by the adaptive control literature

where “direct adaptive control” means no plant model,

and thus no plant parameter estimation takes place but

instead certain plant information is used directly to find

appropriate and convergent control laws and control

parameters, which is required in this research. Direct

NDP is a model independent approach to action

dependent heuristic programming (ADHDP).

Figure 10 shows the model of ADHDP used in this

study, which is based on the model in [12]. In the current

problem setting, let the discounted total reward to go R(t)

at time t be given by

R t = r t + 1 + αr t + 1 + ⋯ = αk−1∞

k=1
r(t + k) (3)

Where the function of r t is the reinforcement value

at time t, and α is a discount factor between 0 and 1.

Figure 10: Schematic diagram of ADHDP.

The critic network is used to provide an output J(t),

which is an approximation for R(t), the weighted total

future reward to go. The reward function R(t) at time t is

given by Eq. (3).

We define the prediction error, and consequently the

Bellman error, for the critic element as

ec t = αJ t − [J(t − 1) − r(t)] (4)

and the objective function to be minimized in the critic

network is

Ec t =
1

2
ec

2 t (5)

In the action network, the weight update in the action

network can be formulated as follows.

ea t = J t − R∗ (6)

The principle in adapting the action network is to

backpropagate the error between the desired ultimate

performance objective, denoted by R*, and the

approximate function J from the critic network. Since

𝑟𝑠 has been defined as the reinforcement signal for

“success,” R* is set to 𝑟𝑠 /(1-α) has in the direct NDP

design paradigm and in subsequent case studies. In this

paper, 𝑟𝑠 is set to be zero for simplification.

An artificial neural network is chosen for

implementation of the action and critic networks. The

structure of the neural networks for both the action and

critic networks are implemented as a multi-layer feed

forward (MLP) neural network. It consists of the input

layer, the hidden layer and the output layer. The hidden

layer neurons have a sigmoid transfer function while other

layers have linear neurons. For the action network, the

architecture is 23x5x1, with twenty-two features and a

bias in the input layer, five nodes in the hidden layer and

one output layer. For the critic network, the architecture is

24x5x1, with twenty-two features, a bias and the output

from action network in the input layer, five nodes in the

hidden layer and one output layer.

A ten-fold cross validation methodology is used for

training/test set generation for the neural network [14].

The neural networks are trained up to 1000 epochs, using

online (Stochastic/Delta) learning. In this case, the next

input pattern is selected randomly from the training set, to

prevent any bias that may occur due to the sequences in

which patterns occur in the training set. For each training

feature, 7 different data states (original image feature data

set and its six different rotated orientation feature data

sets) are applied as the input one by one for both the

action network and the critic network to update the

weights. If the difference between action network output

u(t) and the target is less than 0.5, the reinforcement

signal r(t) takes the reward “0”, otherwise, r(t) takes the

punishment “-1”. The learning rates for both critic and

action network are set to be 0.001. The discount factor α

is set to be 0.1. The test set is the original image feature

data set only.

With the target value for the arrow data set to 1 and

the no-arrow data set to 0, action network outputs after

testing are between -1 and 1. Receiver operating

characteristic (ROC) curves are generated for

classification results based on the neural network outputs

obtained for the ten-fold cross cases [15]. The ROC curve

is a plot of the sensitivity for a binary classifier system as

its discrimination threshold is varied. The ROC curve

represents equivalently the fraction of true positives

versus false negatives rate.

4. Other classification algorithms

4.1. MLP backpropagation neural network

A multilayer perception backpropagation neural

network is investigated for arrow discrimination [16].

Sigmoid transfer functions are used in the hidden layers,

and a linear transfer function is used in the input and

output layer, the neural network architecture is 23x5x1.

The neural networks are trained up to 1000 epochs, using

http://en.wikipedia.org/wiki/Sensitivity_%28tests%29
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/True_positive
http://en.wikipedia.org/wiki/False_positive

online (Stochastic/Delta) learning, ROC curves are

generated by the ten-fold cross strategy.

4.2. Particle swarm optimization (PSO) for

training of a MLP neural network

In swarm intelligence algorithm [17], each particle has

random velocity and memory that keeps track of previous

best position and corresponding fitness. The previous best

value of the particle position is called the „pbest‟. It has

another value called „gbest‟, which is the best value of all

the „pbest‟ positions in the swarm. The basic concept of

PSO is that each particle in the swarm move toward its

pbest and gbest locations at each time step. The basic

concept of PSO is that each particle in the swarm move

toward its pbest and gbest locations at each time step.

(Figure 11)

 In this research, PSO is used to train a MLP neural

network, which has the same architectures and training

epochs as the last one. To train this neural network, all

neuron weights are together to contribute one of the

particles. Each particle is updated toward the global best

position, which will minimize the difference between the

neural network output and target value. Detail of this

algorithm is described in [18].

X

Y

Xk

Xk+1

Vk

Pbest

Gbest

Figure 11: Basic concept of PSO.

4.3. Genetic algorithm (GA) for training of a

MLP neural network

Genetic Algorithm is a kind of optimization by using

selection, crossover, mutation and elitism operators [19].

This MLP neural network still has the same architectures

and training epochs as usual. In the training procedure,

all neuron weights are put together as the parents firstly,

after applying the selection, crossover and mutation

operators, offspring could be generated. The next

offspring is chosen based on whether parent or its

offspring minimizes the difference between the neural

network output and target value.

5. Result and discussion

Adaptive Critic Designs is applied for the arrow

classification. The output is compared with MLP

backpropgation neural network, PSO for training of a

MLP neural network, GA for training of a MLP neural

network. Ten-fold cross testing strategy is implemented

for all of them. ADHDP and other three neural networks

are all build on the same twenty-two input features, use

the same number of training epochs (1000). Since the

output of the neural network is not an accurate class

number, the ROC curve is generated as the comparison

criteria. AUC represent the area under the ROC curve.

Figure 12 shows the ROC curves and AUC result for

these four algorithms.

Figure 12: ROC curve and AUC (area under curve)

for neural networks. (a) MLP backpropgation NN.

AUC=0.9672. (b) PSO based NN. AUC=0.9681. (c) GA

based NN. AUC=0.8839. (d) Direct NDP. AUC=0.9790.

In addition to comparing the discrimination results

from the different classifiers using AUC, as given in

Figure 12, we used a highest true positive rate and highest

true negative rate with minimum difference between them

from the ROC curves. Therefore, the true positive rate

and true negative rate for (a), (b), (c), (d) are 91.53% and

91.56%, 91.53% and 92.77%, 87.66% and 82.97%,

92.86% and 92.03%.

Based on the AUC and the true positive and true

negative comparison, we found that adaptive critic design

achieved the best results among the different classifiers

investigated. In direct NDP, the critic network is used as

the performance evaluation; the reward of reinforcement

learning is helping to update its weight and the output J(t).

Therefore, the action network could update its weight

based on total seven state feature data instead of only one

state feature for other techniques. The global feature data

improves the accuracy of discriminating arrow or no-

arrow.

Furthermore, K-nearest neighbor (KNN) [20] and

Support Vector Machine (SVM) [21] are also applied to

the same data set. In KNN algorithm, generally Euclidean

distance function is used to calculate distance between

two points. K is set to be fifteen. In SVM algorithm,

polynomial is used as kernel function value to train the

data. The true positive rate and true negative rate for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-specificity
s
e
n
s
it
iv

it
y

(a)

(b)

(c)

(d)

KNN and SVM are 93.50% and 88.76%, 90.90% and

93.03%, respectively.

6. Acknowledgment

This work was supported by NLM under contract number

276200800413P and the Intramural Research Program of

the National Institutes of Health (NIH), NLM, and Lister

Hill National Center for Biomedical Communications

(LHNCBC).

7. Conclusions and future work

This paper introduces the ACD design to image

recognition using ADHDP algorithm. The result is very

promising. ADHDP demonstrates greater strength and

superiority than existing methods. In addition, the features

extracted as the input of different classifiers are approved

to be significantly useful.

The future work will include finding the exact

orientation of each arrow. In addition, other adaptive

critic design algorithms such as action dependent dual

heuristic dynamic programming (ADDHP) or action

dependent globalized dual heuristic dynamic

programming (ADGHP) could be implemented as

comparison.

References

[1] L. Wendling, S. Tabbone, “Recognition of arrows in line

drawings based on the aggregation of geometric criteria using

the Choquet integral”, Document Analysis and Recognition,

Proceedings of Seventh International Conference on,

2003, vol. 1, pp. 299-303.

[2] J.E. den Hartogtz, T.K. ten Katet, “Finding arrows in utility

maps using a neural network”, Proceedings of the 12th IAPR

International Conference on Pattern Recognition, Conference B:

Computer Vision & Image Processing, 1994, vol. 2, pp. 190-

194,

[3] J. Park, W. Rasheed, and J. Beak, “Robot Navigation Using

Camera by Identifying Arrow Signs”, Grid and Pervasive

Computing Workshops, GPC Workshops '08, The 3rd

International Conference on Grid and Pervasive Computing,

Kunming, May 2008, pp. 382-386.

[4] M. Sezgin, B. Sankur, "Survey over image thresholding

techniques and quantitative performance evaluation", Journal of

Electronic Imaging, 2003, vol. 13, no. 1, pp. 146-165.

[5] J. Piper, E. Granum, “On fully automatic feature

measurement for banded chromosome classification”,

Cytometry, 1989, vol. 10, no. 3, pp. 242-255.

[6] R.J. Stanley, W.V. Stoecker, R.H. Moss, H.S. Rabinovitz,

A.B. Cognetta, G. Argenziano, and H.P. Soyer, “A basis

function feature-based approach for skin lesion discrimination in

dermatology dermoscopy images”, Skin Research and

Technology, 2008, vol. 14, no. 4, pp. 425-435.

[7] T.M. Mitchell, Machine Learning, the Mc-Graw-Hill

Companies, Inc, 1997.

[8] A. Mood, A.G. Franklin, and C.B. Duane, Introduction to

the Theory of Statistics, McGraw-Hill Companies, Inc, 1974.

[9] R.S. Sutton, A.G. Barto, Reinforcement Learning: An

Introduction, MIT Press, 1998.

[10] R.S. Sutton, A.G. Barto, and R.J. Williams, “reinforcement

learning is direct adaptive optimal control”, Proceedings of

IEEE American Control Conference, Boston, 1991, pp. 2143-

2146.

[11] K.M. Iftekharuddin, Y. Li, “A biologically-inspired

computational model for transformation invariant target

recognition”, IEEE International Joint Conference on Neural

Networks, Hong Kong, 2008, pp.1049 – 1056.

[12] D.V. Prokhorov, D.C. Wunsch, “Adaptive Critic Designs”,

IEEE Transactions on Neural Networks, 1997, vol. 8, no. 5, pp.

997-1007.

[13] J. Si, A.G. Barto, W.B Powell, D.C. Wunsch, Handbook of

Learning and Approximate Dynamic Programming, Wiley-

IEEE Press, 2004.

[14] R. Kohavi, "A study of cross-validation and bootstrap for

accuracy estimation and model selection", Proceedings of the

Fourteenth International Joint Conference on Artificial

Intelligence, 1995, vol.14, pp. 1137–1143.

[15] J. Fogarty, R.S. Baker, and S.E. Hudson, “Case studies in

the use of ROC curve analysis for sensor-based estimates in

human computer interaction”, Proceedings of Graphics

interface, Canadian Human-Computer Communications Society,

School of Computer Science, University of Waterloo, Waterloo,

Ontario Victoria, British Columbia, 2005, vol. 112, pp. 129-136.

[16] S. Haykin, Neural Networks: A Comprehensive

Foundation, Prentice Hall, 1998.

[17] J. Kennedy, R. Eberhart, “Particle swarm optimization”,

Proceedings of the IEEE International Conference on Neural

Networks, Piscataway, NJ, 1995, pp. 1942-1948.

[18] G. Guidse, G. K. Venayagamoorthy, “Comparison of

Particle Swarm Optimization and Backpropagation as Training

Algorithms for Neural Networks”, Swarm Intelligence

Symposium, 2003, pp. 110-117

[19] J.H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, 1975.

[20] T.M. Cover, P.E. Hart, "Nearest neighbor pattern

classification," IEEE Transactions on Information Theory, 1967,

vol. 13, no. 1, pp. 21-27.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8701
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8701
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4428
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4428
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4428
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4539298
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4539298
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4539298
http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4633928&queryText%3D%28reinforcement+learning+image+processing%29%26searchWithin%3Da+biologically-inspired+computational+model+for+transformation+invariant+target+recognition%26openedRefinements%3D*
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4633928&queryText%3D%28reinforcement+learning+image+processing%29%26searchWithin%3Da+biologically-inspired+computational+model+for+transformation+invariant+target+recognition%26openedRefinements%3D*
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4633928&queryText%3D%28reinforcement+learning+image+processing%29%26searchWithin%3Da+biologically-inspired+computational+model+for+transformation+invariant+target+recognition%26openedRefinements%3D*
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4625775
http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Jennie+Si
http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Andrew+G.+Barto
http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Warren+Buckler+Powell
http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Don+Wunsch
http://citeseer.ist.psu.edu/kohavi95study.html
http://citeseer.ist.psu.edu/kohavi95study.html
http://en.wikipedia.org/wiki/Thomas_M._Cover
http://en.wikipedia.org/wiki/Peter_E._Hart

[21] D. Meyer, F. Leisch, and K. Hornik, “The support vector

machine under test”, Neurocomputing, 2003, vol. 55, pp. 169-

186.

