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Abstract 
 

In this research, a novel computational intelligence-

based algorithm to detect artifacts, specifically arrows, in 

medical images is presented. Image analyses techniques 

are developed to find the symbols and text automatically. 

Features are computed from the shape of arrow for the 

discrimination of arrows from other artifacts. We 

investigate a biologically-inspired reinforcement learning 

(RL) approach in an adaptive critic design (ACD) 

framework to apply Action Dependent Heuristic Dynamic 

Programming (ADHDP) for arrow discrimination based 

on the computed features. Experimental results for 

ADHDP are compared with feed forward multi-layer 

perception (MLP) back-propagation artificial neural 

networks (BP-ANN), particle swarm optimization (PSO) 

for training of a MLP neural network, genetic algorithm 

(GA) for training of a MLP neural network, k-nearest 

neighbor (KNN), and support vector machine (SVM). 

 

1. Introduction 
 

The detection of medical image artifacts such as 

arrows is important to highlighting supplemental and 

context-based information which may be helpful in 

understanding medical images.  It is necessary to have an 

accurate algorithm in discriminating arrows from other 

characters and symbols.  There are several methodologies 

that have been implemented to find arrows in previous 

research. Laurent Wendling and Salvatore Tabbone [1] 

proposed a method in recognizing arrows based on the 

aggregation of geometric criteria using the choquet 

interal; J.E. den Hartogtz and T.K. ten Katet [2] gave a 

solution of finding arrows in utility maps using a neural 

network; Jongan Park, Waqas Rasheed, and Junguk Beak 

[3] proposed a way of identifying arrow signs for Robot 

Navigation using a camera-based method.   

Extending techniques from previous research, the 

arrow symbols present in the medical images in our 

experimental data set have variety in shape and size. 

Arrows do not necessarily have to be straight (arrow 3, 

arrow 4) and the shape of the arrows can change (arrow 2) 

as you can see in Figure 1(a). Furthermore, a noise 

example can include characters and symbols, which may 

be of similar size to arrows as shown in Figure 1 (b). 

Therefore, a general and robust arrow detection algorithm 

is needed for discrimination from other medical image 

artifacts.  

 

 
                   (a)                                  (b)             

Figure 1. Medical image examples. 

(a) Arrow image example. (b) Noise image example. 

 

Since both text and symbol objects are white or black, 

they can be segmented by some image analysis 

techniques. After generating the binary image containing 

only text-like and symbol-like objects, features sets are 

used as input to classifiers. An overview of the algorithm 

investigated is shown in Figure 2.  This study uses 144 

medical images annotated by modality (radiological, 

photo, etc.) selected from 2004-2005 issues of the British 

Journal of Oral and Maxillofacial Surgery, including 79 

images with one or more arrows and 65 images with no 

arrows. The image analysis techniques are follows:  

1) Convert RGB images into gray images and inverted 

gray images. 

2) Use Otsu's method [4], which chooses the threshold 

to minimize the intra-class variance of the black and 

white pixels to convert gray images into binary 

images. 
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3) Remove objects that are considered small and objects 

that are considered short.  

4) Get the edge of object with gray drop. The value of 

gray drop is 30. If the absolute value of center pixel 

minus NW, N, NE, W, E, SW, S, SE is greater than 

the gray drop, this pixel will be marked. (Figure 3) 

5) Compare the edge image getting after step 4) with the 

image getting after step 3), keep the objects with the 

same bounding box size. 

6) Or image result with inverted image result.  

 Figure 4 presents an image example of the image 

processing steps for the original image to generate the 

binary mask for feature calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of arrow detection and 

discrimination process. 
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                      Figure 3. Edge detection. 

   

 
                         (a)                                  (b)  

  
                        (c)                                   (d)  

 

         
                       (e)                                   (f) 

  
                      (g)                                    (h) 

  
                       (i)                                     (j) 

 
(k) 

Figure 4: Image processing algorithm example.  (a) 

Original image. (b) Grey image. (c) Image by using 

threshold. (d) Inverted image by using threshold. (e) 

Image after noise removal. (f) Inverted image after 

noise removal. (g) Image by using edge detection. (h) 

Invert image by using edge detection. (i) Image by 

comparing (e) to (g) with the bounding box size. (j) 

Image by comparing (f) to (h) with the bounding box 

size. (k) Final image by or (i) and (j). 
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The remaining sections of this paper include: 1) 

Feature Generation, 2) Adaptive Critic Designs 

Methodology, 3) Other Classification Methodologies, 4) 

Results and Discussion, 5) Acknowledgement, and 6) 

Conclusions and Future Work.  

 

2. Feature generation 
 

After generating the binary image containing only text-

like and symbol-like objects by using above techniques, 

certain features are selected that will help in the 

identification of arrows from the rest of objects. This 

selection process is very important, because the 

identification stage depends heavily upon this process. 

We select twenty-two features that will help us in 

distinguishing the arrows. These characteristic features 

and their explanations are shown as follows: 

MajorAxisLength: length (in pixels) of the major axis of 

the ellipse that has the same normalized second central 

moments as the region. 

MinorAxislength: length (in pixels) of the minor axis of 

the ellipse that has the same normalized second central 

moments as the region. 

Axis Ratio: ratio of MajorAxisLength with 

MinorAxislength. 

Normalized area:  area of the region divided by the whole 

image. 

Solidity: area of the region divided by the Convexhull 

Area. 

EulerNumber: equal to the number of objects in the 

region minus the number of holes in those objects. 

EquiDiam: the diameter of a circle with the same area as 

the region. 

Extent: ratio of area to bounding box area. 

AvgSkelDist: average width of object.  

MinPixelNo:  for two line x=X and x=X+W (X is the top 

left point of bounding box horizontal value; W is the 

width of bounding box), the minimum number of pixels 

of intersection for region and each line as shown in Figure 

5. 

 

x=X x=X+W x=X x=X+W  
 

                      (a)                                      (b) 

Figure 5: MinPixelNo feature. 

(a)Arrow.  (b) Noise. 

 

Weighted Density Distribution features: other arrow 

features are extracted by correlating the shape samples of 

the arrow with weighted density distribution functions 

(WDD) [5-6]. Let 𝐸 = {𝐸 𝑠1 , 𝐸 𝑠2 , … , 𝐸(𝑠𝑚 )}  be the 

sequential of shape samples collected, where m is the 

number of samples collected at a constant rate 

and  𝐸(𝑠𝑖) ∈ 𝑅𝑛 , where1 ≤ 𝑖 ≤ 𝑚 . Figure 6 shows the 

WDD functions used in the experiments. Twelve WDD-

based features are computed. Each of the WDD function 

is decomposed into 12 discrete points for WDD feature 

calculations. Let 𝑊1 denote the WDD function in figure 

6(a), 𝑊2 denote the WDD function in figure 6(b) and so 

on. The gray horizontal position marker for each WDD 

function shown in figure 6 points to the reference position 

for which WDD features is computed. The reference 

position corresponds to the current sample s. Six WDD 

features ( 𝑓1 𝑠 , … , 𝑓6 𝑠  ) corresponding to the 

measurement at sample s are computed according to the 

following expression 

 

 𝑓𝑘 𝑠 =  𝐸 𝑖 𝑊𝑘
𝑠+1
𝑖=𝑠−10 (𝑖 − 𝑠 + 11)                   (1) 

 

For 𝑘 = 1,2, … ,6.  Six additional features 

(𝑓7 𝑠 , … , 𝑓12 𝑠  ) are computed by correlating the six 

WDD functions with the sequence of absolute differences 

between samples value as follows  

 

𝑓𝑘 𝑠 =  |𝐸 𝑖 − 𝐸 𝑖 − 1 |𝑊𝑘
𝑠+1
𝑖=𝑠−10 (𝑖 − 𝑠 + 11)      (2)             

 

In this research, the shape samples of arrow are 

computed in the following way: divide the height of the 

bounding box of arrow by twenty and get line y= Y1 

y=Y2…, y=Y20 . The 20 samples is the length of line y=Y1 

to y=Y20  intersected with this arrow, as you can see in 

figure 7, the red lines. After all, twelve WDD features 

could be generated according to these samples.   

Therefore, with the 144 medical images as the input, 

after image processing and feature extraction, there are 

154 arrow objects and 276 text/noise objects generated. 

They are manually catalogued with class 1 (arrow objects) 

and class 0 (other objects). To evaluate these features, the 

attribute selection criteria are information gain [7] and 

chi-square [8] by Weka®. Table 1 shows information gain 

value and chi-square value for each feature.  

        
(a)                     (b)                       (c) 

 
(d)                    (e)                       (f) 

Figure 6: The WDD functions used to compute 

arrow features [6]. 
 



y=Y1

y=Y2

y=Y3

y=Y20

 
 

Figure 7: Samples for generating WDD features. 
 

The orientation of each object can impact feature 

generation. For example, the feature MinPixelNo is 

supposed to be smaller for arrow objects than for others 

because of the accurate point of arrow. But since the 

various shapes and sizes of arrows, as can be seen in 

Figure 8, this value can still be quite large. This arrow is 

falsely identified as noise by the MLP backpropgation 

neural network.  

 

x=X x=X+W  
Figure 8: Falsely identified arrow. 

 

To improve the outcome, rotating the region is an 

effective solution. Figure 9 shows the arrow image output 

with different rotation values (0 degree, 15 degree, 30 

degree, 45 degree, 60 degree, 75 degree, 90 degree). 

Therefore, seven data sets will be generated after applying 

feature extraction to these seven image sets. 

 

 

 

 

Figure 9:  Arrows with different rotation value. 

 

An ACD-based arrow discrimination methodology is 

then applied in the presence of these seven data sets. So 

the decision of arrow/no-arrow is made by the global data 

set but not the single data set. The input for the neural 

network is the features generated from those seven 

different orientations based on rotation. 
 

 

 

 

          Table 1: Information gain and chi-square value. 
Feature_Name Info_gain_value Chi_square_value 

MajorAxisLength 0.5875 287.0769 

MinorAxislength 0.1924 106.3261 

Axis Ratio 0.4380 217.0534 

Normalized area 0.5052 248.0459 

Solidity 0.1038 58.169 

eulerNumber 0.1587 73.3162 

EquiDiam 0.5628 278.9818 

Extent 0.2260 112.2445 

AvgSkelDist 0.4566 230.6459 

MinPixelNo 0.1555 75.0847 

f1 0.1837 109.0502 

f2 0.2504 141.9929 

f3 0.2768 155.7666 

f4 0.1658 95.7217 

f5 0.0457 27.9648 

f6 0.4004 213.7316 

f7 0.3361 187.9629 

f8 0.1205 71.3723 

f9 0.1350 81.8844 

f10 0.0538 32.9075 

f11 0.1837 25.5232 

f12 0.2768 159.0519 

 

3. Adaptive critic design methodology 
 

Reinforcement learning is the problem faced by an 

agent that must learn behavior through trial-and-error 

interactions with a dynamic environment. It is a 

computational approach to learning whereby an agent 

tries to maximize the total amount of reward it receives 

when interacting with a complex, uncertain environment 

[9]. The RL has been developed in various applications 

such as neuro-computing [10], and multi-resolution object 

recognition [11]. 

The Adaptive Critic Design provides a workstation for 

implementing RL. An ACD approximates the neuro-

dynamic programming by using an action and a critic 

network, respectively [12]. This model employs 

reinforcement learning (RL) through direct neural 



dynamic programming (Direct NDP) [13]. The term 

“direct” is influenced by the adaptive control literature 

where “direct adaptive control” means no plant model, 

and thus no plant parameter estimation takes place but 

instead certain plant information is used directly to find 

appropriate and convergent control laws and control 

parameters, which is required in this research.  Direct 

NDP is a model independent approach to action 

dependent heuristic programming (ADHDP). 

Figure 10 shows the model of ADHDP used in this 

study, which is based on the model in [12]. In the current 

problem setting, let the discounted total reward to go R(t) 

at time t be given by 

 

R t = r t + 1 + αr t + 1 + ⋯ =  αk−1∞

k=1
r(t + k)               (3)  

 

Where the function of r t  is the reinforcement value 

at time t, and α is a discount factor between 0 and 1.   

 

 
Figure 10: Schematic diagram of ADHDP. 

 

The critic network is used to provide an output J(t), 

which is an approximation for R(t), the weighted total 

future reward to go. The reward function R(t) at time t is 

given by Eq. (3).  

We define the prediction error, and consequently the 

Bellman error, for the critic element as 

 

ec t = αJ t − [J(t − 1) − r(t)]                                  (4) 

 

and the objective function to be minimized in the critic 

network is 

 

Ec t =
1

2
ec

2 t                                                              (5) 

  

In the action network, the weight update in the action 

network can be formulated as follows. 

 

ea t = J t − R∗                                                          (6)    

      

The principle in adapting the action network is to 

backpropagate the error between the desired ultimate 

performance objective, denoted by R*, and the 

approximate function J from the critic network. Since 

𝑟𝑠 has been defined as the reinforcement signal for 

“success,” R* is set to 𝑟𝑠 /(1-α) has in the direct NDP 

design paradigm and in subsequent case studies. In this 

paper, 𝑟𝑠  is set to be zero for simplification.   

An artificial neural network is chosen for 

implementation of the action and critic networks. The 

structure of the neural networks for both the action and 

critic networks are implemented as a multi-layer feed 

forward (MLP) neural network. It consists of the input 

layer, the hidden layer and the output layer. The hidden 

layer neurons have a sigmoid transfer function while other 

layers have linear neurons. For the action network, the 

architecture is 23x5x1, with twenty-two features and a 

bias in the input layer, five nodes in the hidden layer and 

one output layer. For the critic network, the architecture is 

24x5x1, with twenty-two features, a bias and the output 

from action network in the input layer, five nodes in the 

hidden layer and one output layer.  

A ten-fold cross validation methodology is used for 

training/test set generation for the neural network [14]. 

The neural networks are trained up to 1000 epochs, using 

online (Stochastic/Delta) learning. In this case, the next 

input pattern is selected randomly from the training set, to 

prevent any bias that may occur due to the sequences in 

which patterns occur in the training set. For each training 

feature, 7 different data states (original image feature data 

set and its six different rotated orientation feature data 

sets) are applied as the input one by one for both the 

action network and the critic network to update the 

weights. If the difference between  action network output 

u(t) and the target is less than 0.5, the reinforcement 

signal r(t) takes the reward “0”, otherwise, r(t) takes the 

punishment “-1”.  The learning rates for both critic and 

action network are set to be 0.001. The discount factor α 

is set to be 0.1. The test set is the original image feature 

data set only. 

With the target value for the arrow data set  to 1 and 

the no-arrow data set to 0, action network outputs after 

testing are between -1 and 1. Receiver operating 

characteristic (ROC) curves are generated for 

classification results based on the neural network outputs 

obtained for the ten-fold cross cases [15]. The ROC curve 

is a plot of the sensitivity for a binary classifier system as 

its discrimination threshold is varied. The ROC curve 

represents equivalently the fraction of true positives 

versus false negatives rate.  

 

4. Other classification algorithms 
 

4.1. MLP backpropagation neural network 
 

A multilayer perception backpropagation neural 

network is investigated for arrow discrimination [16]. 

Sigmoid transfer functions are used in the hidden layers, 

and a linear transfer function is used in the input and 

output layer, the neural network architecture is 23x5x1. 

The neural networks are trained up to 1000 epochs, using 
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online (Stochastic/Delta) learning, ROC curves are 

generated by the ten-fold cross strategy.  

 

4.2. Particle swarm optimization (PSO) for 

training of a MLP neural network 
  

In swarm intelligence algorithm [17], each particle has 

random velocity and memory that keeps track of previous 

best position and corresponding fitness. The previous best 

value of the particle position is called the „pbest‟. It has 

another value called „gbest‟, which is the best value of all 

the „pbest‟ positions in the swarm. The basic concept of 

PSO is that each particle in the swarm move toward its 

pbest and gbest locations at each time step. The basic 

concept of PSO is that each particle in the swarm move 

toward its pbest and gbest locations at each time step. 

(Figure 11) 

 In this research, PSO is used to train a MLP neural 

network, which has the same architectures and training 

epochs as the last one. To train this neural network, all 

neuron weights are together to contribute one of the 

particles.  Each particle is updated toward the global best 

position, which will minimize the difference between the 

neural network output and target value. Detail of this 

algorithm is described in [18]. 
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Figure 11: Basic concept of PSO. 

 

4.3. Genetic algorithm (GA) for training of a 

MLP neural network  
 

Genetic Algorithm is a kind of optimization by using 

selection, crossover, mutation and elitism operators [19]. 

This MLP neural network still has the same architectures 

and training epochs as usual.  In the training procedure, 

all neuron weights are put together as the parents firstly, 

after applying the selection, crossover and mutation 

operators, offspring could be generated. The next 

offspring is chosen based on whether parent or its 

offspring minimizes the difference between the neural 

network output and target value.   

 

5. Result and discussion 
 

Adaptive Critic Designs is applied for the arrow 

classification. The output is compared with MLP 

backpropgation neural network, PSO for training of a 

MLP neural network, GA for training of a MLP neural 

network. Ten-fold cross testing strategy is implemented 

for all of them. ADHDP and other three neural networks 

are all build on the same twenty-two input features, use 

the same number of training epochs (1000). Since the 

output of the neural network is not an accurate class 

number, the ROC curve is generated as the comparison 

criteria.  AUC represent the area under the ROC curve. 

Figure 12 shows the ROC curves and AUC result for 

these four algorithms. 

 
Figure 12: ROC curve and AUC (area under curve) 

for neural networks. (a) MLP backpropgation NN. 

AUC=0.9672. (b) PSO based NN. AUC=0.9681. (c) GA 

based NN. AUC=0.8839. (d) Direct NDP. AUC=0.9790. 

 

In addition to comparing the discrimination results 

from the different classifiers using AUC, as given in 

Figure 12, we used a highest true positive rate and highest 

true negative rate with minimum difference between them 

from the ROC curves.  Therefore, the true positive rate 

and true negative rate for (a), (b), (c), (d) are 91.53% and 

91.56%, 91.53% and 92.77%, 87.66% and 82.97%, 

92.86% and 92.03%.  

Based on the AUC and the true positive and true 

negative comparison, we found that adaptive critic design 

achieved the best results among the different classifiers 

investigated. In direct NDP, the critic network is used as 

the performance evaluation; the reward of reinforcement 

learning is helping to update its weight and the output J(t). 

Therefore, the action network could update its weight 

based on total seven state feature data instead of only one 

state feature for other techniques. The global feature data 

improves the accuracy of discriminating arrow or no-

arrow.   

Furthermore, K-nearest neighbor (KNN) [20] and 

Support Vector Machine (SVM) [21] are also applied to 

the same data set. In KNN algorithm, generally Euclidean 

distance function is used to calculate distance between 

two points. K is set to be fifteen. In SVM algorithm, 

polynomial is used as kernel function value to train the 

data.  The true positive rate and true negative rate for 
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KNN and SVM are 93.50% and 88.76%, 90.90% and 

93.03%, respectively.   
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7. Conclusions and future work 
 

This paper introduces the ACD design to image 

recognition using ADHDP algorithm. The result is very 

promising. ADHDP demonstrates greater strength and 

superiority than existing methods. In addition, the features 

extracted as the input of different classifiers are approved 

to be significantly useful.  

The future work will include finding the exact 

orientation of each arrow. In addition, other adaptive 

critic design algorithms such as action dependent dual 

heuristic dynamic programming (ADDHP) or action 

dependent globalized dual heuristic dynamic 

programming (ADGHP) could be implemented as 

comparison. 
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