You are here

Show:
Printer-friendly versionPrinter-friendly version
  • Fiszman M, Demner-Fushman D, Lang FM, Goetz P, Rindflesch TC. Interpreting Comparative Constructons in Biomedical Text Proc 2007 Workshop BioNL'07, June 2007, pp. 137-144, Prague, Czech Republic
  • Hauser SE, Le DX, Thoma GR. Automated Zone Correction in Bitmapped Document Images SPIE: Document Recognition and Retrieval VII. 2000 Jan;3976: 248-58.
  • Hole WT, Srinivasan S. Discovering Missed Synonymy in a Large Concept-Orientated Methathesaurus AMIA Annu Symp Proc. 2000;():354-8.
  • Hristovski D, Peterlin B, Mitchell JA, Humphrey SM. Improving literature based discovery support by genetic knowledge integration. Stud Health Technol Inform. 2003;95:68-73.
  • Jimeno-Yepes A, Mork JG, Wilkowski B, Demner-Fushman D, Aronson AR. MEDLINE MeSH indexing: lessons learned from machine learning and future directions. Proc IHI 2012, 737-742.
  • Jimeno-Yepes A, Wilkowski B, Mork J, van Lenten E, Demner-Fushman D, Aronson AR. A bottom-up approach to MEDLINE indexing recommendations. AMIA Annu Symp Proc. 2011;2011:1583-92. Epub 2011 Oct 22.
  • Kayaalp M, Aronson AR, Humphrey SM, Ide NC, Tanabe LK, Smith LH, Demner-Fushman D, Loane RF, Mork JG, Bodenreider O. Methods for accurate retrieval of MEDLINE citations in functional genomics. The Twelfth Text Retrieval Conference (TREC 2003). 2003:441-50.
  • Kilicoglu H, Demner-Fushman D, Rindflesch TC, Wilczynski NL, Haynes RB. Toward Automatic Recognition of High Quality Clinical Evidence. AMIA Annu Symp Proc. 2008 Nov 6:368
  • Kim I, Thoma GR. Automated Identification of Potential Conflict-of-Interest in Biomedical Articles Using Hybrid Deep Neural Network. Proc. 14th Int’l Conf. Machine Learning and Data Mining (MLDM 2018), LNAI 10934, pp. 99-112, Newark, NJ, July 2018.
  • Kim I, Thoma GR. Automated Identification of Potential Conflict-of-Interest in Biomedical Articles Using Hybrid Deep Neural Network. Proc. 14th Int’l Conf. Machine Learning and Data Mining (MLDM 2018), LNAI 10934, pp. 99-112, Newark, NJ, July 2018.
  • Kim I, Thoma GR. Machine Learning with Selective Word Statistics for Automated Classification of Citation Subjectivity in Online Biomedical Articles. Proc. Int’l Conf. Artificial Intelligence (ICAI’17), pp. 201-207, Las Vegas, July 2017.
  • Kim I, Thoma GR. Automated Classification of Author’s Sentiments in Citation Using Machine Learning Techniques: A Preliminary Study. Proc. the 2015 IEEE Conf. Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2015), Niagara Falls, Canada, Aug. 12-15, 2015.
  • Kim I, Le DX, Thoma GR. Identifying “comment-on” citation data in online biomedical articles using SVM-based text summarization technique. Proc. Int’l Conf. Artificial Intelligence (ICAI’12), vol. 1, pp. 431-437, Las Vegas, July 2012.
  • Kim I, Le DX, Thoma GR. Automated identification of biomedical article type using support vector machines. Proc. 18th SPIE Document Recognition and Retrieval, 7874:787403 (1-9), San Francisco, January 2011.
  • Kim I, Le DX, Thoma GR. Automated Cleanup Processing for Extracting Bibliographic Data from Biomedical Online Journals In: Callaos N, Lesso W, editors. SCI 2005. Proc. 9th World Multiconference on Systemics, Cybernetics and Informatics; 2005 Jul 10-13; Vol. 4; Orlando (FL): International Institute of Informatics and Systemics; c2005. 401-5
  • Kim IC, Le DX, Thoma GR. Hybrid approach combining contextual and statistical information for identifying and statistical information for identifying MEDLINE citation terms. Proc. SPIE-IS/T Electronic Imaging. San Jose, CA. January 2008;6815:68150P(1-9)
  • Kim IC, Le DX, Thoma GR. Identification of "comment-on sentences" in online biomedical documents using support vector machines. Proc. SPIE conference on Document Recognition and Retrieval, 6500:65000O (1-8), San Jose, January 2007.
  • Kim J, Hong S, Thoma GR. Labeling Author Affiliations in Biomedical Articles Using Markov Model Classifiers. The 13th International Conference on Data Mining (DMIN2017), pp. 105-110, Las Vegas, USA, July 2017.
  • Kim J, Thoma GR. Named Entity Recognition in Affiliations of Biomedical Articles Using Statistics and HMM Classifiers. The 2016 International Conference on Data Mining (DMIN2016), Las Vegas, USA, pp. 236-241, July, 2016.
  • Kim J, Lobuglio PS, Thoma GR. Visualization of Statistics from MEDLINE. 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS 2016), Dublin and Belfast, Ireland, pp. 290-291, June, 2016.
  • Kim J, Le DX, Thoma GR. Identification of Investigator Name Zones Using SVM Classifiers and Heuristic Rules. 12th international Conference on Document Analysis and Recognition (ICDAR). Washington D.C., August 2013.
  • Kim J, Le DX, Thoma GR. Combining SVM Classifiers to Identify Investigator Name Zones in Biomedical Articles. IS&T/SPIE’s 22nd Annual Symposium on Electronic Imaging. San Francisco, CA, January 2012; 8297.
  • Kim J, Le DX, Thoma GR. Naive Bayes and SVM Classifiers For Classifying Databank Accession Number Sentences From Online Biomedical Articles IS&T/SPIE's 22nd Annual Symposium on Electronic Imaging. San Jose, CA. January 2010;7534:75340U-1 - 8
  • Kim J, Le DX, Thoma GR. Inferring Grant Support Types From Online Biomedical Articles 22nd IEEE ISCBMS. Albuquerque, NM. August 2009
  • Kim J, Le DX, Thoma GR. Naive Bayes Classifier for Extracting Bibliographic Information From Biomedical Online Articles Proc 2008 International Conference on Data Mining. Las Vegas, Nevada, USA. July 2008;II:373-8

Pages