You are here

Printer-friendly versionPrinter-friendly version
  • Rajaraman S, Antani SK, Poostchi Mohammadabadi M, Silamut K, Hossain MA, Maude RJ, Jaeger S, Thoma GR. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. 2018 Apr 16;6:e4568. doi: 10.7717/peerj.4568. eCollection 2018.
  • Ren H, Campos-Nanez E, Yaniv Z, Banovac F, Abeledo H, Hata N, Cleary K. Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J Biomed Health Inform. 2014 May;18(3):920-8. doi: 10.1109/JBHI.2013.2287202. Epub 2013 Oct 24.
  • Rondonotti E, Koulaouzidis A, Karargyris A, Giannakou A, Fini L, Soncini M, Pennazio M, Douglas S, Shams A, Lachlan N, Zahid A, Mandelli G, Girelli C. Utility of 3-dimensional image reconstruction in the diagnosis of small-bowel masses in capsule endoscopy (with video). Gastrointest Endosc. 2014 Oct;80(4):642-51. doi: 10.1016/j.gie.2014.04.057. Epub 2014 Jul 3.
  • Santosh KC, Antani SK. Automated chest x-ray screening: Can lung region symmetry help detect pulmonary abnormalities? doi: 10.1109/TMI.2017.2775636 vol. 37, no. 5, 1168-1177.
  • Schauder DM, Kuybeda O, Zhang J, Klymko K, Bartesaghi A, Borgnia MJ, Mayer ML, Subramaniam S. Glutamate receptor desensitization is mediated by changes in quaternary structure of the ligand binding domain. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5921-6. doi: 10.1073/pnas.1217549110. Epub 2013 Mar 25.
  • Song D, Kim E, Huang X, Patruno J, Munoz-Avila H, Heflin J, Long LR, Antani SK. Multimodal entity coreference for cervical dysplasia diagnosis. IEEE Transactions on Medical Imaging, 34(1), January 2015, 229-245.
  • Sornapudi S, Stanley RJ, Stoecker WV, Almubarak H, Long LR, Antani SK, Thoma GR, Zuna R, Frazier SR. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels. J Pathol Inform. 2018 Mar 5;9:5. doi: 10.4103/jpi.jpi_74_17. eCollection 2018.
  • Stanley RJ, Antani S, Long LR, Thoma GR, Gupta K, Das M. Size-invariant Descriptors for Detecting Regions of Abnormal Growth in Cervical Vertebrae Comput Med Imaging Graph. 2008 Jan;32(1):44-52. Epub 2007 Oct 22
  • Thamizhvani TR, Lakshmanan S, Rajaraman S. Mobile application-based computer-aided diagnosis of skin tumours from dermal images. The Imaging Science Journal, 66:6, 382-391, 2018, DOI: 10.1080/13682199.2018.1492682
  • Thamizhvani TR, Lakshmanan S, Rajaraman S. Computer Aided Diagnosis of Skin Tumours from Dermal Images. Hemanth D., Smys S. (eds) Computational Vision and Bio Inspired Computing. Lecture Notes in Computational Vision and Biomechanics, vol 28. Springer, Cham
  • Thoma GR. Public Access to Anatomic Images Chapter in: Medical Informatics: Knowledge Management and Data Mining in Biomedicine
  • Tran EE, Borgnia MJ, Kuybeda O, Schauder DM, Bartesaghi A, Frank GA, Sapiro G, Milne JL, Subramaniam S. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation. PLoS Pathog. 2012;8(7):e1002797. doi: 10.1371/journal.ppat.1002797. Epub 2012 Jul 12.
  • Vajda S, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, Antani SK, Thoma GR. Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. J Med Syst. 2018 Jun 29;42(8):146. doi: 10.1007/s10916-018-0991-9.
  • Vajda S, Rangoni Y, Cecotti H. Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: Application to handwritten character recognition. Pattern Recognit Lett. 2015 Jun 1;58:23-28.
  • Xu T, Zhang H, Xin C, Kim E, Long LR, Xue Z, Antani SK, Huang Z. Multi-feature based Benchmark for Cervical Dysplasia Classification Evaluation. Pattern Recognition. ISSN 0031-3203, DOI: 10.1016/j.patcog.2016.09.027.
  • Xu X, Lee DJ, Antani SK, Long LR, Archiband JK. Using Relevance Feedback with Short-term Memory for Content-based Spine X-ray Image Retrieval. J Neurocomputing. June 2009;72(10-12):2259-69.
  • Xu X, Lee DJ, Antani S, Long LR. A Spine X-ray Image Retrieval System using Partial Shape Matching IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):100-8.
  • Xue Z, Long LR, Antani SK, Neve L, Zhu Y, Thoma GR. A unified set of analysis tools for uterine cervix image segmentation. Comput Med Imaging Graph. 2010 Dec;34(8):593-604. doi: 10.1016/j.compmedimag.2010.04.002. Epub 2010 May 26.
  • Yang F, Yu H, Silamut K, Maude RJ, Jaeger S, Antani SK. Smartphone-Supported Malaria Diagnosis Based on Deep Learning. In: Suk HI., Liu M., Yan P., Lian C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science, vol 11861. Springer, Cham.
  • Yaniv Z, Lowekamp B, Johnson HJ, Beare R. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research. J Digit Imaging. 2018 Jun;31(3):290-303. doi: 10.1007/s10278-017-0037-8.
  • Yaniv Z. Registration for Orthopaedic Interventions. Chapter 3 in: Zheng G, Li S, editors. Computational Radiology for Orthopaedic Interventions: Lecture Notes in Computational Vision and Biomechanics. Springer International Publishing; c2016. p. 41-70.
  • Yaniv Z, Linte CA. Applications of Augmented Reality in the Operating Room. Chapter 19 in Fundamentals of Wearable Computers and Augmented Reality, 2nd ed. CRC Press, 2015.
  • Yaniv Z, Holmes DR III, editors. Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling. Proceedings of conference held 2014 Feb 15-20; San Diego. Proc. SPIE 9036; 2014 Mar 12. 764 pages. ISBN: 9780819498298.
  • Yoo TS, Bliss D, Lowekamp B, Chen D, Murphy GE, Narayan K, Hartnell LM, Do T, Subramaniam S. Visualizing cells and humans in 3D: Biomedical image analysis at nanometer and meter scales. IEEE Computer Graphics and Applications. 2012 Sep-Oct;32(5):39-49. DOI: 10.1109/MCG.2012.68.
  • Yoo TS. 3D Medical Informatics: Information Science in Multiple Dimensions. In: Chen H, Fuller SS, Friedman C, Hersh W, editors. Medical Informatics: Knowledge Management and Data Mining in Biomedicine. New York: Springer Science. p. 333-58.
  • Yoo TS. The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration. In: Johnson C, Hansen C, editors. The Visualization Handbook. Amsterdam: Elsevier; 2005. p. 733-48.
  • Yoo TS, Metaxas DN. Open science – combining open data and open source software: Medical image analysis with the Insight Toolkit. Med Image Anal. 2005 Dec;9(6):503-6. Epub 2005 Sep 19.
  • Yoo TS, Ackerman MJ. Open Source Software for Medical Image Processing and Visualization. Communications of the ACM. 2005 Feb;48(2):55-9. DOI:10.1145/1042091.1042120.
  • Yoo TS, editor. Insight Into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. Natick, Massachusetts: A.K. Peters; 2004 Aug 16. 410 pages.
  • Yoo TS, Machiraju R, editors. From Transfer Functions to Level Sets: Advanced Topics in Volume Image Processing. Tutorial Notes for IEEE Visualization 2001; 2001 Oct 21-26; San Diego. 100 pages.
  • Yoo TS, Machiraju R, editors. Image Processing for Volume Graphics. Tutorial Notes for ACM SIGGRAPH 2001; 2001 Aug 12-17; Los Angeles. 333 pages.
  • Yoo TS, Machiraju R, editors. Image Processing for Volume Graphics and Analysis. Tutorial Notes for IEEE Visualization 2000; 2000 Oct 8-13; Salt Lake City. 125 pages.
  • Zhu Y, Huang X, Wang W, Lopresti D, Long LR, Antani SA, Xue Z, Thoma GR. Balancing the Role of Priors in Multi-Observer Segmentation Evaluation J Signal Process Syst. 2008 May 28;55(1-3):185-207
  • Zou J, Antani SK, Thoma G. Unified Deep Neural Network for Segmentation and Labeling of Multi-Panel Biomedical Figures Journal of the Association for Information Science and Technology (JASIST), 2019
  • Zou J. Unified Deep Neural Network for Segmentation and Labeling of Multi-Panel Biomedical Figures Journal of the Association for Information Science and Technology (JASIST), 2019